Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 1, 20 - 26, 15.06.2021
https://doi.org/10.33435/tcandtc.813939

Abstract

Supporting Institution

Kırıkkale University

Project Number

BAP-2016/016,2017/019

References

  • [1] R.A. Corley, Meek,M.E. ,E.E. Carney, Mode of action:Oxalate crystal-induced renal tubule degeneration and glycolic acid-induced dysmorphogenesis Renal developmental effects of ethylene glycol,Crit.Rev.Toxicol. 35 (2005) 691-702.
  • [2] A.F.Eder, C.M. McGrath, Y.G. Dowdy, J.E. Tomaszewski, F.M. Rosenberg, R.B. Wilson, B.A. Wolf, L.M. Shaw,Ethylene glycol poisining:Pharmocokinetic and analytical factors affecting laboratory diagnosis,Clin.Chem.44 (1998) 168-177.
  • [3] G.,Coen, B.,Weiss, Oxidation of ethylene glycol to glycolaldyde by mammalian tissues,Enzymol Biol.Clin.6 (1966) 288-296.
  • [4] T.C., Marshall, Dose dependent disposition of ethylene glycol in the rat after intravenous administration,J.Toxicol Environment Health, 10 (1982) 397-409.
  • [5] E.W., Carney, An integrated perspective on the developmental toxicity of ethylene glycol,Repr. Toxicol Rev.8 (1994) 99-113.
  • [6] E.W., Jeffrey, Current management of ethylene glycol poisoning,Drugs. 61 (2001) 979-988.
  • [7] F.,Huq, D., Ababneh, Moleculer modelling analysis of the metabolic activation of ethylene glycol,J.of Pharmacology and Toxicology. 2-1 (2007) 54-62.
  • [8] E.D., Booth, O. Dofferhoff, P.J. Boogaard, W.P. Watson, Comparison of the metabolism of etylene glycol and glycolic acid in vitro by precision cut tissue slices from female rat,rabbit and human liver,Xenobiotica. 34 (2004) 31-48.
  • [9] P.K., Gessner, D.V. Parke, R.T. Williams,The metabolism of C-14-labelled ethylene glycol,Biochemical.79 (1961) 482-489.
  • [10] M., Kowalczyk, S. Halvorsen, S. Ovrebo, J. E. Bredesen, D. Jacobsen, Ethanol treatment in ethylene glycol poisoned patients, Veterinary and Human Toxicology , 40- 4 (1998) 225 – 228.
  • [11] S. K., Cox, Ferslew, K. E., L. J. Boelen, The toxicokinetics of 1,3-butylene glycol versus ethanol in the treatment of ethylene glycol poisoning, Veterinary and Human Toxicology. 34- 1 (1992) 36 – 42.
  • [12] S., Orest, A. Mark, J. Barteau, G. Chen, Ethanol and ethylene glycol on Ni/Pt(111) bimetallic surfaces: A DFT and Hreels study, Surface Science, 602 (2008) 3578–3587.
  • [13] S., Babak, A. Somayeh, Study of Malachite Green Fading in Water–Ethanol– Ethylene Glycol Ternary Mixtures, J. Solution Chem. 42 (2013) 151–164.
  • [14] D., Kima, K. Sonb, D. Sung, Y. Kim, W. Chunga,Effect of added ethanolinethyleneglycol–NaClelectrolyteon titanium electropolishing, Corrosion Science, 98 (2015) 494–499.
  • [15] O. F., Omobosede, I. O Kenneth, Comparative electrocatalytic oxidation of ethanol, ethylene glycol andglycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shellnanocatalysts, Electrochimica Acta. 128 (2014) 279–286.
  • [16] L., Shou-Lun, S. Hsuan-Ting C. Yu-Chou, L Yeung-Pin, Y. Shih-Jiun,Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole, Chemico-Biological Interactions. 191 (2011) 26–31.
  • [17] F., Gökalp, An investigation of the olive phenols activity as a natural medicine, Journal of Food and Drug Analysis. 2 6 (2018) 6 5 7-6 6 1.
  • [18] R. Pearson, Absolute electronegativity and hardness: applications to organic chemistry, J. Org.Chem. 54 (1989) 1423-1430.
  • [19] R. G. Pearson, Proceeding of the National Academiy of Sciences, 83 (1986) 8440-8441.
  • [20] B. Gómez, N. V. Likhanova, M. A. Domínguez Aguilar, O. Olivares, J. M. Hallen, and J. M. Martínez-Magadán,, Theoretical Study of a New Group of Corrosion Inhibitors, Journal of Physical Chemistry A, 109-39 (2005) 8950-8957.
  • [21] P.K. Chattaraj, Chemical Reactivity Theory: A Density Functional View, 610 (2009) CRC Press, New York.
  • [22] A. Eşme, S. G. Sağdınç, The linear, nonlinear optical properties and quantum chemical parameters of some sudan dyes, BAÜ The Institutaion Of Science. 16-1 (2014) 47-75 .
  • [23] D. J. Orton, J. M. Boyd, D. Affleck, D. Duce, W. Walsh, I. Seiden-Long, One-step extraction and quantitation of toxic alcohols and ethylene glycol in plasma by capillary gas chromatography (GC) with flame ionization detection (FID). Clinical biochemistry. 49 (2016) 132–138.
  • [24] P. Gurumoorthy, D. Mahendiran, A.K. Rahiman, Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes, Chemico-Biological Interactions. 248 (2016) 21-35.
  • [25] Gaussian 09, Revizyon E.01, M. J.; Frisch, Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.;01 (2010).
  • [26] P. Zhao, S.X. Cao, Y.C. Guo, P. Gao, Y.Y. Wang, M.M. Peng, Y.F, Zhao, Investigation of the C-N bond rotation of spirophosphorane carbamates by dynamic NMR and DFT calculation,Tetrahedron. 71(46) (2015) 8738 –8745.
  • [27] https://www.microwaves101.com/encyclopedias/miscellaneous-dielectric-constants (2018), 11 April.
  • [28] F., Gökalp, A Study On The Chemical Properties Of Eugenol And Eugenol Acetate, Clove Essentıal Oils, Sigma J Eng & Nat Sci. 34 (3) (2016) 407-414.
  • [29] S. Phungphong, A.Kijtawornrat, P.P. Tombe, J. Wattanapermpool,J, Bupha‐Intr, T. Suksamrarn, S. Acute,inhibitory effect of alpha‐mangostin on sarcoplasmic reticulum calcium‐ATPase and myocardial relaxation. J Biochem Mol Toxicol. (2017)31:e21942.
  • [30] K. McMartin, D. Jacobsen, K.E. Hovda, Antidotes for poisoning by alcohols that form toxic metabolites. Br J Clin Pharmacol. 81 (2016) 505e15.
  • [31] W. S., Waring, Alcohols and glycols poisoning, Poisonous Substances.48-3 (2020) 185-188.
  • [32] D. Matthew, M.D. Krasowski, Educational Case: Ethylene Glycol Poisoning, Academic Pathology. 7 (2020).
  • [33] P. Dibajnia, L.A. M. Sivilotti, D. Juurlink, M. Shurrab, ST-elevation in ethylene glycol toxicity mimicking myocardial infarction, Journal of Electrocardiology. 58 (2020) 128–131.
  • [34] F.Gökalp, The chemical activity of Juglone in different phases as a protective agent, Journal of Fluorine Chemistry. 242 (2021) 109701.
  • [35] F.Gökalp, An Investigation into the Usage of Monosaccharides with GLUT1 and GLUT3 as Prognostic Indicators for Cancer, Nutrition and Cancer. (2021) 1-5.
  • [36] F.Gökalp, A theoretical investigation of TNT in different phases by using DFT, Turkish Computational and Theoretical Chemistry.3-1 (2019) 1-4.
  • [37] F.Gökalp,T.A.Demir, A Theoretical Study On The Chemical Activities Of The Mainly Oregano Essential Oils,3-2 (2019) 86-91.

The effective ethanol rate against the toxicity of ethylene glycol

Year 2021, Volume: 5 Issue: 1, 20 - 26, 15.06.2021
https://doi.org/10.33435/tcandtc.813939

Abstract

Ethylene glycol (EG) is a toxic substance and EG metabolites cause metabolic acidosis. The major emphasis in this study is to get rid of the toxicity of EG before conversion to its metabolites. The interaction between ethylene glycol and ethanol has been studied using DFT (Density functional theory method). In ethylene glycol metabolites in the blood; Glycolic acid is more stable and gloxal less stable. The interaction of ethylene glycol with ethanol has been considered for ethylene glycol metabolism. Thermodynamic values obtained from ethylene glycol metabolites and ethanol were also analyzed. According to the analyst results of ethanol and ethylene glycol ratios; The maximum effective point is very stable in the blood and its solubility is determined at this rate. It is very important to determine the most appropriate rate in the prevention of toxicity. This study is an important study in terms of the use of ethanol in the prevention of toxicity of EG, the first of its rates and in terms of preventing the loss of time and substance.

Project Number

BAP-2016/016,2017/019

References

  • [1] R.A. Corley, Meek,M.E. ,E.E. Carney, Mode of action:Oxalate crystal-induced renal tubule degeneration and glycolic acid-induced dysmorphogenesis Renal developmental effects of ethylene glycol,Crit.Rev.Toxicol. 35 (2005) 691-702.
  • [2] A.F.Eder, C.M. McGrath, Y.G. Dowdy, J.E. Tomaszewski, F.M. Rosenberg, R.B. Wilson, B.A. Wolf, L.M. Shaw,Ethylene glycol poisining:Pharmocokinetic and analytical factors affecting laboratory diagnosis,Clin.Chem.44 (1998) 168-177.
  • [3] G.,Coen, B.,Weiss, Oxidation of ethylene glycol to glycolaldyde by mammalian tissues,Enzymol Biol.Clin.6 (1966) 288-296.
  • [4] T.C., Marshall, Dose dependent disposition of ethylene glycol in the rat after intravenous administration,J.Toxicol Environment Health, 10 (1982) 397-409.
  • [5] E.W., Carney, An integrated perspective on the developmental toxicity of ethylene glycol,Repr. Toxicol Rev.8 (1994) 99-113.
  • [6] E.W., Jeffrey, Current management of ethylene glycol poisoning,Drugs. 61 (2001) 979-988.
  • [7] F.,Huq, D., Ababneh, Moleculer modelling analysis of the metabolic activation of ethylene glycol,J.of Pharmacology and Toxicology. 2-1 (2007) 54-62.
  • [8] E.D., Booth, O. Dofferhoff, P.J. Boogaard, W.P. Watson, Comparison of the metabolism of etylene glycol and glycolic acid in vitro by precision cut tissue slices from female rat,rabbit and human liver,Xenobiotica. 34 (2004) 31-48.
  • [9] P.K., Gessner, D.V. Parke, R.T. Williams,The metabolism of C-14-labelled ethylene glycol,Biochemical.79 (1961) 482-489.
  • [10] M., Kowalczyk, S. Halvorsen, S. Ovrebo, J. E. Bredesen, D. Jacobsen, Ethanol treatment in ethylene glycol poisoned patients, Veterinary and Human Toxicology , 40- 4 (1998) 225 – 228.
  • [11] S. K., Cox, Ferslew, K. E., L. J. Boelen, The toxicokinetics of 1,3-butylene glycol versus ethanol in the treatment of ethylene glycol poisoning, Veterinary and Human Toxicology. 34- 1 (1992) 36 – 42.
  • [12] S., Orest, A. Mark, J. Barteau, G. Chen, Ethanol and ethylene glycol on Ni/Pt(111) bimetallic surfaces: A DFT and Hreels study, Surface Science, 602 (2008) 3578–3587.
  • [13] S., Babak, A. Somayeh, Study of Malachite Green Fading in Water–Ethanol– Ethylene Glycol Ternary Mixtures, J. Solution Chem. 42 (2013) 151–164.
  • [14] D., Kima, K. Sonb, D. Sung, Y. Kim, W. Chunga,Effect of added ethanolinethyleneglycol–NaClelectrolyteon titanium electropolishing, Corrosion Science, 98 (2015) 494–499.
  • [15] O. F., Omobosede, I. O Kenneth, Comparative electrocatalytic oxidation of ethanol, ethylene glycol andglycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shellnanocatalysts, Electrochimica Acta. 128 (2014) 279–286.
  • [16] L., Shou-Lun, S. Hsuan-Ting C. Yu-Chou, L Yeung-Pin, Y. Shih-Jiun,Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole, Chemico-Biological Interactions. 191 (2011) 26–31.
  • [17] F., Gökalp, An investigation of the olive phenols activity as a natural medicine, Journal of Food and Drug Analysis. 2 6 (2018) 6 5 7-6 6 1.
  • [18] R. Pearson, Absolute electronegativity and hardness: applications to organic chemistry, J. Org.Chem. 54 (1989) 1423-1430.
  • [19] R. G. Pearson, Proceeding of the National Academiy of Sciences, 83 (1986) 8440-8441.
  • [20] B. Gómez, N. V. Likhanova, M. A. Domínguez Aguilar, O. Olivares, J. M. Hallen, and J. M. Martínez-Magadán,, Theoretical Study of a New Group of Corrosion Inhibitors, Journal of Physical Chemistry A, 109-39 (2005) 8950-8957.
  • [21] P.K. Chattaraj, Chemical Reactivity Theory: A Density Functional View, 610 (2009) CRC Press, New York.
  • [22] A. Eşme, S. G. Sağdınç, The linear, nonlinear optical properties and quantum chemical parameters of some sudan dyes, BAÜ The Institutaion Of Science. 16-1 (2014) 47-75 .
  • [23] D. J. Orton, J. M. Boyd, D. Affleck, D. Duce, W. Walsh, I. Seiden-Long, One-step extraction and quantitation of toxic alcohols and ethylene glycol in plasma by capillary gas chromatography (GC) with flame ionization detection (FID). Clinical biochemistry. 49 (2016) 132–138.
  • [24] P. Gurumoorthy, D. Mahendiran, A.K. Rahiman, Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes, Chemico-Biological Interactions. 248 (2016) 21-35.
  • [25] Gaussian 09, Revizyon E.01, M. J.; Frisch, Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.;01 (2010).
  • [26] P. Zhao, S.X. Cao, Y.C. Guo, P. Gao, Y.Y. Wang, M.M. Peng, Y.F, Zhao, Investigation of the C-N bond rotation of spirophosphorane carbamates by dynamic NMR and DFT calculation,Tetrahedron. 71(46) (2015) 8738 –8745.
  • [27] https://www.microwaves101.com/encyclopedias/miscellaneous-dielectric-constants (2018), 11 April.
  • [28] F., Gökalp, A Study On The Chemical Properties Of Eugenol And Eugenol Acetate, Clove Essentıal Oils, Sigma J Eng & Nat Sci. 34 (3) (2016) 407-414.
  • [29] S. Phungphong, A.Kijtawornrat, P.P. Tombe, J. Wattanapermpool,J, Bupha‐Intr, T. Suksamrarn, S. Acute,inhibitory effect of alpha‐mangostin on sarcoplasmic reticulum calcium‐ATPase and myocardial relaxation. J Biochem Mol Toxicol. (2017)31:e21942.
  • [30] K. McMartin, D. Jacobsen, K.E. Hovda, Antidotes for poisoning by alcohols that form toxic metabolites. Br J Clin Pharmacol. 81 (2016) 505e15.
  • [31] W. S., Waring, Alcohols and glycols poisoning, Poisonous Substances.48-3 (2020) 185-188.
  • [32] D. Matthew, M.D. Krasowski, Educational Case: Ethylene Glycol Poisoning, Academic Pathology. 7 (2020).
  • [33] P. Dibajnia, L.A. M. Sivilotti, D. Juurlink, M. Shurrab, ST-elevation in ethylene glycol toxicity mimicking myocardial infarction, Journal of Electrocardiology. 58 (2020) 128–131.
  • [34] F.Gökalp, The chemical activity of Juglone in different phases as a protective agent, Journal of Fluorine Chemistry. 242 (2021) 109701.
  • [35] F.Gökalp, An Investigation into the Usage of Monosaccharides with GLUT1 and GLUT3 as Prognostic Indicators for Cancer, Nutrition and Cancer. (2021) 1-5.
  • [36] F.Gökalp, A theoretical investigation of TNT in different phases by using DFT, Turkish Computational and Theoretical Chemistry.3-1 (2019) 1-4.
  • [37] F.Gökalp,T.A.Demir, A Theoretical Study On The Chemical Activities Of The Mainly Oregano Essential Oils,3-2 (2019) 86-91.
There are 37 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Faik Gökalp 0000-0003-4363-3839

Project Number BAP-2016/016,2017/019
Publication Date June 15, 2021
Submission Date October 21, 2020
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Gökalp, F. (2021). The effective ethanol rate against the toxicity of ethylene glycol. Turkish Computational and Theoretical Chemistry, 5(1), 20-26. https://doi.org/10.33435/tcandtc.813939
AMA Gökalp F. The effective ethanol rate against the toxicity of ethylene glycol. Turkish Comp Theo Chem (TC&TC). June 2021;5(1):20-26. doi:10.33435/tcandtc.813939
Chicago Gökalp, Faik. “The Effective Ethanol Rate Against the Toxicity of Ethylene Glycol”. Turkish Computational and Theoretical Chemistry 5, no. 1 (June 2021): 20-26. https://doi.org/10.33435/tcandtc.813939.
EndNote Gökalp F (June 1, 2021) The effective ethanol rate against the toxicity of ethylene glycol. Turkish Computational and Theoretical Chemistry 5 1 20–26.
IEEE F. Gökalp, “The effective ethanol rate against the toxicity of ethylene glycol”, Turkish Comp Theo Chem (TC&TC), vol. 5, no. 1, pp. 20–26, 2021, doi: 10.33435/tcandtc.813939.
ISNAD Gökalp, Faik. “The Effective Ethanol Rate Against the Toxicity of Ethylene Glycol”. Turkish Computational and Theoretical Chemistry 5/1 (June 2021), 20-26. https://doi.org/10.33435/tcandtc.813939.
JAMA Gökalp F. The effective ethanol rate against the toxicity of ethylene glycol. Turkish Comp Theo Chem (TC&TC). 2021;5:20–26.
MLA Gökalp, Faik. “The Effective Ethanol Rate Against the Toxicity of Ethylene Glycol”. Turkish Computational and Theoretical Chemistry, vol. 5, no. 1, 2021, pp. 20-26, doi:10.33435/tcandtc.813939.
Vancouver Gökalp F. The effective ethanol rate against the toxicity of ethylene glycol. Turkish Comp Theo Chem (TC&TC). 2021;5(1):20-6.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)