Research Article
BibTex RIS Cite

Study of dipolar 1.3 cycloaddition reaction by DFT method, as well as study of antibacterial activity of two isomers 1.4 and 1.5 on two therapeutic targets E. coli and Helicobacter pylori, by molecular docking

Year 2021, Volume: 5 Issue: 2, 46 - 55, 15.12.2021
https://doi.org/10.33435/tcandtc.1020278

Abstract

A study was carried out on the 1.3 dipolar cycloaddition reaction between Phenylethyne and Benzyl (diazyn-1-ium-1-yl) azanide, using the different theoretical approaches, to know precisely the reaction path, and the regioselectivity of reaction, as well as the transition state. We carried out this study by using the DFT method on the one hand, on the other hand we studied the antibacterial activity of two isomers 1.4 and 1.5 obtained from cycloaddition reaction on two therapeutic targets E. coli and Helicobacter pylori, using Molecular docking.

References

  • [1] Santelli, M.; Pons, J. M. Lewis Acids and Selectivity in Organic Synthesis. CRC Press, Boca Raton, (1996).
  • [2] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry. Wiley: New York, (1984).
  • [3] Gothelf, K.V.; Jørgensen, K.A. Chem. Rev: Asymmetric 1,3-Dipolar Cycloaddition Reactions 98 (1998) 863–909. https://doi.org/10.1021/cr970324e
  • [4] Padwa, A.; Pearson, W. H. Synthetic applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Naturel products. Wiley: New York, (2002).
  • [5] Frederickson, M. Tetrahedron: Optically active isoxazolidines via asymmetric cycloaddition reactions of nitrones with alkenes: applications in organic synthesis 53 (1997) 403–425. https://doi.org/10.1016/S0040-4020(96)01095-2
  • [6] Roberto, S.; Gomes, Guilherme A.M.; Jardim, Renato L,de Carvalho.; Maria H. Araujo.;Eufrânio N, da Silva Júnior. Beyond Copper-Catalyzed Azide-Alkyne 1,3-dipolar Cycloaddition: Synthesis and mechanism insights, (2019).
  • [7] Kenneth, N.; Campbell, Barbara, K. Organic Syntheses: Phenylacetylene, 30, 72, (1950). https://doi:10.15227/orgsyn.030.0072.
  • [8] HAJJI, Halima, et al. Antiproliferative Activity: Discovery of new Benzoxanthenes derivatives by Using Various Statistical Methods 2D/3D-QSAR and Molecular Docking. RHAZES: Green and Applied Chemistry, 12 (2021) 40-59.
  • [9] Pearson, R.G. Hard and Soft acid and Bases. Dowden, Hutchinson and Ross: Stroudenburry, PA, (1973).
  • [10] Epiotis, N.D.; Am, Chem, Soc, J. Regioselectivity of concerted cycloadditions 17 (1973) 5624–5632. https://doi.org/10.1021/ja00798a029
  • [11] Parr, R. G.; Wang, W. Density Theory for atoms and Molecules. University Press: Oxford, (1989).
  • [12] Robert, G.; Parr, László.; Szentpály, v.; and, Shubin Liu. Electrophilicity Index. Journal of the American Chemical Society 121 (9) (1999) 1922-1924. https://doi.org/10.1021/ja983494x
  • [13] Yang, W.; Mortier, W.J.; Am, Chem, Soc, J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, 108 (19) (1986) 5708-11. https://doi. 10.1021/ja00279a008.
  • [14] Eyring, H.; Polanyi, M.; Chem, Phys, J. The Journal of Chemical Physics: Energy Distribution Among Reagents and Products of Atomic Reactions 31, 1338 (1959). https://doi.org/10.1063/1.1730597
  • [15] Eyring, H.; Chem, Phys, J. The Activated Complex in Chemical Reactions 3(107), (1935). https://doi.org/10.1063/1.1749604
  • [16] Huisgen, R. Angew. Chem: 1.3-Dipolar cycloadditions 75 (1963) 604-637. https://doi.org/10.1002/anie.196305651
  • [17] Woodward, R. B.; Hoffmann, Roald. Stereochemistry of Electrocyclic Reactions. Journal of the American Chemical Society. 87 (2): 395 (1965). https:// doi:10.1021/ja01080a054
  • [18] Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. Drug Discovery Today: The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. 22 (10) (2017) 1572‑1581. https://doi.10.1016/j.drudis.2017.05.014
  • [19] Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Letters. 56 (22): 28539 (2015).
  • [20] Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-Catalyzed Cycloaddition of Aryl Azides and Alkynes. Org Lett. 9 (26) (2007) 5337‑9.
  • [21] Kaper, J. B., J. P. Nataro and H. L. Mobley. "Pathogenic Escherichia coli." Nat Rev Microbiol 2(2) (2004) 123-140.
Year 2021, Volume: 5 Issue: 2, 46 - 55, 15.12.2021
https://doi.org/10.33435/tcandtc.1020278

Abstract

References

  • [1] Santelli, M.; Pons, J. M. Lewis Acids and Selectivity in Organic Synthesis. CRC Press, Boca Raton, (1996).
  • [2] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry. Wiley: New York, (1984).
  • [3] Gothelf, K.V.; Jørgensen, K.A. Chem. Rev: Asymmetric 1,3-Dipolar Cycloaddition Reactions 98 (1998) 863–909. https://doi.org/10.1021/cr970324e
  • [4] Padwa, A.; Pearson, W. H. Synthetic applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Naturel products. Wiley: New York, (2002).
  • [5] Frederickson, M. Tetrahedron: Optically active isoxazolidines via asymmetric cycloaddition reactions of nitrones with alkenes: applications in organic synthesis 53 (1997) 403–425. https://doi.org/10.1016/S0040-4020(96)01095-2
  • [6] Roberto, S.; Gomes, Guilherme A.M.; Jardim, Renato L,de Carvalho.; Maria H. Araujo.;Eufrânio N, da Silva Júnior. Beyond Copper-Catalyzed Azide-Alkyne 1,3-dipolar Cycloaddition: Synthesis and mechanism insights, (2019).
  • [7] Kenneth, N.; Campbell, Barbara, K. Organic Syntheses: Phenylacetylene, 30, 72, (1950). https://doi:10.15227/orgsyn.030.0072.
  • [8] HAJJI, Halima, et al. Antiproliferative Activity: Discovery of new Benzoxanthenes derivatives by Using Various Statistical Methods 2D/3D-QSAR and Molecular Docking. RHAZES: Green and Applied Chemistry, 12 (2021) 40-59.
  • [9] Pearson, R.G. Hard and Soft acid and Bases. Dowden, Hutchinson and Ross: Stroudenburry, PA, (1973).
  • [10] Epiotis, N.D.; Am, Chem, Soc, J. Regioselectivity of concerted cycloadditions 17 (1973) 5624–5632. https://doi.org/10.1021/ja00798a029
  • [11] Parr, R. G.; Wang, W. Density Theory for atoms and Molecules. University Press: Oxford, (1989).
  • [12] Robert, G.; Parr, László.; Szentpály, v.; and, Shubin Liu. Electrophilicity Index. Journal of the American Chemical Society 121 (9) (1999) 1922-1924. https://doi.org/10.1021/ja983494x
  • [13] Yang, W.; Mortier, W.J.; Am, Chem, Soc, J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, 108 (19) (1986) 5708-11. https://doi. 10.1021/ja00279a008.
  • [14] Eyring, H.; Polanyi, M.; Chem, Phys, J. The Journal of Chemical Physics: Energy Distribution Among Reagents and Products of Atomic Reactions 31, 1338 (1959). https://doi.org/10.1063/1.1730597
  • [15] Eyring, H.; Chem, Phys, J. The Activated Complex in Chemical Reactions 3(107), (1935). https://doi.org/10.1063/1.1749604
  • [16] Huisgen, R. Angew. Chem: 1.3-Dipolar cycloadditions 75 (1963) 604-637. https://doi.org/10.1002/anie.196305651
  • [17] Woodward, R. B.; Hoffmann, Roald. Stereochemistry of Electrocyclic Reactions. Journal of the American Chemical Society. 87 (2): 395 (1965). https:// doi:10.1021/ja01080a054
  • [18] Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. Drug Discovery Today: The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. 22 (10) (2017) 1572‑1581. https://doi.10.1016/j.drudis.2017.05.014
  • [19] Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Letters. 56 (22): 28539 (2015).
  • [20] Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-Catalyzed Cycloaddition of Aryl Azides and Alkynes. Org Lett. 9 (26) (2007) 5337‑9.
  • [21] Kaper, J. B., J. P. Nataro and H. L. Mobley. "Pathogenic Escherichia coli." Nat Rev Microbiol 2(2) (2004) 123-140.
There are 21 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Mohammed Aziz Ajana 0000-0002-7742-4376

Abdessadak Oumayma 0000-0002-6397-4879

Halima Hajjı 0000-0003-2545-9427

Yassıne Koubı 0000-0002-2483-5307

Tahar Lakhlıfı 0000-0001-6707-9057

Mohammed Bouachrıne 0000-0002-8901-047X

Publication Date December 15, 2021
Submission Date November 7, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Ajana, M. A., Oumayma, A., Hajjı, H., Koubı, Y., et al. (2021). Study of dipolar 1.3 cycloaddition reaction by DFT method, as well as study of antibacterial activity of two isomers 1.4 and 1.5 on two therapeutic targets E. coli and Helicobacter pylori, by molecular docking. Turkish Computational and Theoretical Chemistry, 5(2), 46-55. https://doi.org/10.33435/tcandtc.1020278
AMA Ajana MA, Oumayma A, Hajjı H, Koubı Y, Lakhlıfı T, Bouachrıne M. Study of dipolar 1.3 cycloaddition reaction by DFT method, as well as study of antibacterial activity of two isomers 1.4 and 1.5 on two therapeutic targets E. coli and Helicobacter pylori, by molecular docking. Turkish Comp Theo Chem (TC&TC). December 2021;5(2):46-55. doi:10.33435/tcandtc.1020278
Chicago Ajana, Mohammed Aziz, Abdessadak Oumayma, Halima Hajjı, Yassıne Koubı, Tahar Lakhlıfı, and Mohammed Bouachrıne. “Study of Dipolar 1.3 Cycloaddition Reaction by DFT Method, As Well As Study of Antibacterial Activity of Two Isomers 1.4 and 1.5 on Two Therapeutic Targets E. Coli and Helicobacter Pylori, by Molecular Docking”. Turkish Computational and Theoretical Chemistry 5, no. 2 (December 2021): 46-55. https://doi.org/10.33435/tcandtc.1020278.
EndNote Ajana MA, Oumayma A, Hajjı H, Koubı Y, Lakhlıfı T, Bouachrıne M (December 1, 2021) Study of dipolar 1.3 cycloaddition reaction by DFT method, as well as study of antibacterial activity of two isomers 1.4 and 1.5 on two therapeutic targets E. coli and Helicobacter pylori, by molecular docking. Turkish Computational and Theoretical Chemistry 5 2 46–55.
IEEE M. A. Ajana, A. Oumayma, H. Hajjı, Y. Koubı, T. Lakhlıfı, and M. Bouachrıne, “Study of dipolar 1.3 cycloaddition reaction by DFT method, as well as study of antibacterial activity of two isomers 1.4 and 1.5 on two therapeutic targets E. coli and Helicobacter pylori, by molecular docking”, Turkish Comp Theo Chem (TC&TC), vol. 5, no. 2, pp. 46–55, 2021, doi: 10.33435/tcandtc.1020278.
ISNAD Ajana, Mohammed Aziz et al. “Study of Dipolar 1.3 Cycloaddition Reaction by DFT Method, As Well As Study of Antibacterial Activity of Two Isomers 1.4 and 1.5 on Two Therapeutic Targets E. Coli and Helicobacter Pylori, by Molecular Docking”. Turkish Computational and Theoretical Chemistry 5/2 (December 2021), 46-55. https://doi.org/10.33435/tcandtc.1020278.
JAMA Ajana MA, Oumayma A, Hajjı H, Koubı Y, Lakhlıfı T, Bouachrıne M. Study of dipolar 1.3 cycloaddition reaction by DFT method, as well as study of antibacterial activity of two isomers 1.4 and 1.5 on two therapeutic targets E. coli and Helicobacter pylori, by molecular docking. Turkish Comp Theo Chem (TC&TC). 2021;5:46–55.
MLA Ajana, Mohammed Aziz et al. “Study of Dipolar 1.3 Cycloaddition Reaction by DFT Method, As Well As Study of Antibacterial Activity of Two Isomers 1.4 and 1.5 on Two Therapeutic Targets E. Coli and Helicobacter Pylori, by Molecular Docking”. Turkish Computational and Theoretical Chemistry, vol. 5, no. 2, 2021, pp. 46-55, doi:10.33435/tcandtc.1020278.
Vancouver Ajana MA, Oumayma A, Hajjı H, Koubı Y, Lakhlıfı T, Bouachrıne M. Study of dipolar 1.3 cycloaddition reaction by DFT method, as well as study of antibacterial activity of two isomers 1.4 and 1.5 on two therapeutic targets E. coli and Helicobacter pylori, by molecular docking. Turkish Comp Theo Chem (TC&TC). 2021;5(2):46-55.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)