Research Article
BibTex RIS Cite

Density functional analysis of conducting molecules: A Theoretical Investigation via QTAIM approach

Year 2022, Volume: 6 Issue: 1, 42 - 51, 15.06.2022
https://doi.org/10.33435/tcandtc.1023777

Abstract

The assessment of quaterphenyl and quarter (1,4 dithiine) molecules joining the spatial dissemination of electron inside the framework, was finished using Density Functional analysis incorporated with LANL2DZ premise set joined with the Bader's AIM theory. All the examinations were carried out within growing electric field from 0.05–0.26VÅ−1. The chemical nature and the topological assessment of the nano wire were studied in detail by subjecting the same to external electric field to prove the possible commercial importance of the structure in the field of nanoelectronics. HOMO-LUMO assessment was made to choose the way in which the one-dimensional nanowires show conductivity. The I-V characteristic plot and ESP surface were generated to study the conducting nature of the nanowires.

Supporting Institution

Not applicable

References

  • [1] W. Yutaka, H. Ryoma, C. Toyohiro, M. Shinichi, N. Tomonobu, E. Stefan, Dimas de O. Helmut D., and K. Kenji, Self-Assembled Molecular Nanowires of 6,13-Bis(methylthio) pentacene: Growth, Electrical Properties, and Applications. Nano Letters, 8 (10) (2008) 3273-7.
  • [2] A. Irfan, J. Zhang, and Y. Chang, Theoretical investigations of the charge transfer properties of anthracene derivatives. Theoretical Chemistry Accounts, 137 (1) (2018) 1-15.
  • [3] G. Erik, M. Liqiang and Y. Peidong Introduction: 1D Nanomaterials/Nanowires. Chemical Reviews, 119 (15) (2019) 8955–8957.
  • [4] M.J. Frisch, Trucks., G.W. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G.Scalmani, V. Barone, B. Mennucci, et al., Gaussian09. In Journal of the American Statistical Association, (2009).
  • [5] P. Geerlings, F. De Proft, and W. Langenaeker, Conceptual Density Functional Theory. Chemical Reviews, 103(5) (2003) 1793-873.
  • [6] C.E. Check, T.O. Faust, J.M. Bailey, B.J. Wright, T.M. Gilbert, and L.S. Sunderlin, Addition of polarization and diffuse functions to the LANL2DZ basis set for P-block elements. Journal of Physical Chemistry A, 105 (2001) 8111.
  • [7] R. Carbó-Dorca, and P. Bultinck, Quantum mechanical basis for Mulliken population analysis. Journal of Mathematical Chemistry, 6(3) (2004) 231- 239.
  • [8] V. Suleimanov, and W.H. Green, Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods. Journal of Chemical Theory and Computation, 11(9) (2015) 4248-59.
  • [9] A. Bader Quantum Theory of Molecular Structure and Its Applications. Chemical Reviews, 91 (1991) 893– 928.
  • [10] AIM 2000 Journal of Computational Chemistry, 22 (2001) 545-559.
  • [11] N.M. O’Boyle, A.L. Tenderholt, and K.M. Langner, Cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29 (2008) 839-845.
  • [12] S.R. Gadre, R.K. Pathak, Nonexistence of local maxima in molecular electrostatic potential maps. Proc. Indian Acad. Sci. - Chem. Sci, 102 (2) (1990) 189-192.
  • [13] J.S. Murray and P. Politzer, The electrostatic potential: An overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1 (2011) 153‐163.
  • [14] R. Prakash Chandra, L. Frederick and L.V.Marcel Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network. Journal of Medicinal Chemistry, 63 (16) (2020) 8778–8790.
  • [15] E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng, and T. Ferrin, UCSF Chimera - A Visualization System for Exploratory Research and Analysis. Journal of Computational Chemistry, 25 (2004) 1605–1612.
  • [16] J.S. Murray, P. Politzer, Statistical analysis of the molecular surface electrostatic potential: An approach to describing noncovalent interactions in condensed phases. J. Mol. Struct.THEOCHEM,425 (1998) 107-114.
  • [17] Z. Chamani, Z. Bayat, S.J. Mahdizadeh, Theoretical study of the electronic conduction through organic nanowires. Journal of Structural Chemistry, 55 (3) (2014) 530- 538.
  • [18] S. Eliziane.Santos Vitória., S. ReisLuciana Guimarães Clebio, Nascimento Jr., Molecular wires formed from native and push-pull derivatives polypyrroles and β-cyclodextrins: A HOMO-LUMO gap theoretical investigation. Chemical Physics Letters, (730) (2019) 141-146.
  • [19] G. Zhang, and C.B. Musgrave, Comparison of DFT methods for molecular orbital eigenvalue calculations. Journal of Physical Chemistry A, 111 (2007) 1554–1561.
  • [20] V. Mujica, M. A. Ratner, Current-voltage characteristics of tunneling molecular junctions for off-resonance injection. Chemical Physics, 264 (2001) 365-370.
  • [21] B. Kirtman, B. Champagne, and D.M. Bishop, Electric field simulation of substituents in donor - Acceptor polyenes: A comparison with ab initio predictions for dipole moments, polarizabilities, and hyperpolarizabilities. Journal of the American Chemical Society, 122 (2000) 8007–8012.
Year 2022, Volume: 6 Issue: 1, 42 - 51, 15.06.2022
https://doi.org/10.33435/tcandtc.1023777

Abstract

References

  • [1] W. Yutaka, H. Ryoma, C. Toyohiro, M. Shinichi, N. Tomonobu, E. Stefan, Dimas de O. Helmut D., and K. Kenji, Self-Assembled Molecular Nanowires of 6,13-Bis(methylthio) pentacene: Growth, Electrical Properties, and Applications. Nano Letters, 8 (10) (2008) 3273-7.
  • [2] A. Irfan, J. Zhang, and Y. Chang, Theoretical investigations of the charge transfer properties of anthracene derivatives. Theoretical Chemistry Accounts, 137 (1) (2018) 1-15.
  • [3] G. Erik, M. Liqiang and Y. Peidong Introduction: 1D Nanomaterials/Nanowires. Chemical Reviews, 119 (15) (2019) 8955–8957.
  • [4] M.J. Frisch, Trucks., G.W. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G.Scalmani, V. Barone, B. Mennucci, et al., Gaussian09. In Journal of the American Statistical Association, (2009).
  • [5] P. Geerlings, F. De Proft, and W. Langenaeker, Conceptual Density Functional Theory. Chemical Reviews, 103(5) (2003) 1793-873.
  • [6] C.E. Check, T.O. Faust, J.M. Bailey, B.J. Wright, T.M. Gilbert, and L.S. Sunderlin, Addition of polarization and diffuse functions to the LANL2DZ basis set for P-block elements. Journal of Physical Chemistry A, 105 (2001) 8111.
  • [7] R. Carbó-Dorca, and P. Bultinck, Quantum mechanical basis for Mulliken population analysis. Journal of Mathematical Chemistry, 6(3) (2004) 231- 239.
  • [8] V. Suleimanov, and W.H. Green, Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods. Journal of Chemical Theory and Computation, 11(9) (2015) 4248-59.
  • [9] A. Bader Quantum Theory of Molecular Structure and Its Applications. Chemical Reviews, 91 (1991) 893– 928.
  • [10] AIM 2000 Journal of Computational Chemistry, 22 (2001) 545-559.
  • [11] N.M. O’Boyle, A.L. Tenderholt, and K.M. Langner, Cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29 (2008) 839-845.
  • [12] S.R. Gadre, R.K. Pathak, Nonexistence of local maxima in molecular electrostatic potential maps. Proc. Indian Acad. Sci. - Chem. Sci, 102 (2) (1990) 189-192.
  • [13] J.S. Murray and P. Politzer, The electrostatic potential: An overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1 (2011) 153‐163.
  • [14] R. Prakash Chandra, L. Frederick and L.V.Marcel Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network. Journal of Medicinal Chemistry, 63 (16) (2020) 8778–8790.
  • [15] E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng, and T. Ferrin, UCSF Chimera - A Visualization System for Exploratory Research and Analysis. Journal of Computational Chemistry, 25 (2004) 1605–1612.
  • [16] J.S. Murray, P. Politzer, Statistical analysis of the molecular surface electrostatic potential: An approach to describing noncovalent interactions in condensed phases. J. Mol. Struct.THEOCHEM,425 (1998) 107-114.
  • [17] Z. Chamani, Z. Bayat, S.J. Mahdizadeh, Theoretical study of the electronic conduction through organic nanowires. Journal of Structural Chemistry, 55 (3) (2014) 530- 538.
  • [18] S. Eliziane.Santos Vitória., S. ReisLuciana Guimarães Clebio, Nascimento Jr., Molecular wires formed from native and push-pull derivatives polypyrroles and β-cyclodextrins: A HOMO-LUMO gap theoretical investigation. Chemical Physics Letters, (730) (2019) 141-146.
  • [19] G. Zhang, and C.B. Musgrave, Comparison of DFT methods for molecular orbital eigenvalue calculations. Journal of Physical Chemistry A, 111 (2007) 1554–1561.
  • [20] V. Mujica, M. A. Ratner, Current-voltage characteristics of tunneling molecular junctions for off-resonance injection. Chemical Physics, 264 (2001) 365-370.
  • [21] B. Kirtman, B. Champagne, and D.M. Bishop, Electric field simulation of substituents in donor - Acceptor polyenes: A comparison with ab initio predictions for dipole moments, polarizabilities, and hyperpolarizabilities. Journal of the American Chemical Society, 122 (2000) 8007–8012.
There are 21 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Jayalakshmi Palaniappan 0000-0001-9807-0514

Jothi Balakrishnan 0000-0002-7609-2031

Selvaraju Karuppannan 0000-0002-5660-4765

Arputharaj David Stephen 0000-0002-8590-6164

Early Pub Date March 15, 2022
Publication Date June 15, 2022
Submission Date November 17, 2021
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Palaniappan, J., Balakrishnan, J., Karuppannan, S., David Stephen, A. (2022). Density functional analysis of conducting molecules: A Theoretical Investigation via QTAIM approach. Turkish Computational and Theoretical Chemistry, 6(1), 42-51. https://doi.org/10.33435/tcandtc.1023777
AMA Palaniappan J, Balakrishnan J, Karuppannan S, David Stephen A. Density functional analysis of conducting molecules: A Theoretical Investigation via QTAIM approach. Turkish Comp Theo Chem (TC&TC). June 2022;6(1):42-51. doi:10.33435/tcandtc.1023777
Chicago Palaniappan, Jayalakshmi, Jothi Balakrishnan, Selvaraju Karuppannan, and Arputharaj David Stephen. “Density Functional Analysis of Conducting Molecules: A Theoretical Investigation via QTAIM Approach”. Turkish Computational and Theoretical Chemistry 6, no. 1 (June 2022): 42-51. https://doi.org/10.33435/tcandtc.1023777.
EndNote Palaniappan J, Balakrishnan J, Karuppannan S, David Stephen A (June 1, 2022) Density functional analysis of conducting molecules: A Theoretical Investigation via QTAIM approach. Turkish Computational and Theoretical Chemistry 6 1 42–51.
IEEE J. Palaniappan, J. Balakrishnan, S. Karuppannan, and A. David Stephen, “Density functional analysis of conducting molecules: A Theoretical Investigation via QTAIM approach”, Turkish Comp Theo Chem (TC&TC), vol. 6, no. 1, pp. 42–51, 2022, doi: 10.33435/tcandtc.1023777.
ISNAD Palaniappan, Jayalakshmi et al. “Density Functional Analysis of Conducting Molecules: A Theoretical Investigation via QTAIM Approach”. Turkish Computational and Theoretical Chemistry 6/1 (June 2022), 42-51. https://doi.org/10.33435/tcandtc.1023777.
JAMA Palaniappan J, Balakrishnan J, Karuppannan S, David Stephen A. Density functional analysis of conducting molecules: A Theoretical Investigation via QTAIM approach. Turkish Comp Theo Chem (TC&TC). 2022;6:42–51.
MLA Palaniappan, Jayalakshmi et al. “Density Functional Analysis of Conducting Molecules: A Theoretical Investigation via QTAIM Approach”. Turkish Computational and Theoretical Chemistry, vol. 6, no. 1, 2022, pp. 42-51, doi:10.33435/tcandtc.1023777.
Vancouver Palaniappan J, Balakrishnan J, Karuppannan S, David Stephen A. Density functional analysis of conducting molecules: A Theoretical Investigation via QTAIM approach. Turkish Comp Theo Chem (TC&TC). 2022;6(1):42-51.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)