Research Article
BibTex RIS Cite

Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene

Year 2023, Volume: 7 Issue: 2, 1 - 11, 15.05.2023
https://doi.org/10.33435/tcandtc.1144794

Abstract

We have explored the potential energy surface of the triplet oxygen atom O(3P) reaction with 1,3-butadiene at CBS-QB3 levels of theory. Possible different pathways have been determined to better understand the reaction mechanism. Thus, the first pathway of the oxidation of 1,3-butadiene by the triplet oxygen O(3P) is show that the major product is CH3-CO-CH=CH2. The results agree with those obtained experimentally in relative to the reaction enthalpies. The transition state theory (TST) was employed to compute rate constants over the temperature range 297-798K. The obtained results have shown that the electrophilic O-addition pathways on the double bond are dominant up in the temperature range. The activation energy is in line with the proposed addition mechanism.

References

  • [1] R. Atkinson, “Gas-phase tropospheric chemistry of organic compounds: a review,” Atmospheric Environment. Part A. General Topics, 24 (1990) 1-41.
  • [2] B.J. Finlayson-Pitts, J.N. Pitts, “Chemistry of the Upper and Lower Atmosphere,” Academic Press, San Diego, 2000.
  • [3] R.J. Cvetanović, “Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with unsaturated hydrocarbons,” Journal of Physical Chemistry Reference Data, 16 (1987) 261-326.
  • [4] D.L. Baulch, C.T. Bowman, C.J. Cobos, et al., “Evaluated Kinetic Data for Combustion Modeling: Supplement II,” Journal of Physical Chemistry Reference Data, 34 (2005) 757.
  • [5] V.D. Knyazev, V.S. Arutyunov, V.I. Vedeneev, “The mechanism of O(3P) atom reaction with ethylene and other simple olefins,” International Journal of Chemistry Kinetics, 24 (1992) 545-561.
  • [6] T.L. Nguyen, L. Vereecken, X.J. Hou, et al., “Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(XAg):  A comprehensive theoretical study,” Journal of Physical Chemistry A, 109 (2005) 7489-7499.
  • [7] C. Cavallotti, F. Leonori, N. Balucani, et al., “Relevance of the channel leading to formaldehyde + triplet ethylidene in the O(3P) + propene reaction under combustion conditions,” Journal of Physical Chemistry Letters, 5 (2014) 4213-4218.
  • [8] H. Sabbah, L. Biennier, I.R. Sims, et al., “Understanding reactivity at very low temperatures: The reactions of oxygen atoms with alkenes,” Science, 317 (2007) 102-105.
  • [9] P. Zhao, W. Yuan, H. Sun, et al., “Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers,” Proceedings of the Combustion Institute, 35 (2015) 309-316.
  • [10] R.J. Cvetanović, “Reaction of oxygen atoms with ethylene,” Journal of Chemical Physics, 23 (1955) 1375-1380.
  • [11] R.J. Cvetanović, “Biradical intermediate in the addition of the ground state oxygen atoms, O(3P), to olefins,” Journal of Physical Chemistry, 74 (1970) 2730-2732.
  • [12] R. Quandt, Z. Min, X. Wang, et al., “Reactions of O(3P) with alkenes:  H, CH2CHO, CO, and OH channels,” Journal of Physical Chemistry A, 102 (1998) 60-64.
  • [13] S. Hirokami, R.J. Cvetanović, “Reaction of oxygen atoms, O(3P), with olefins in liquid nitrogen solution at 770K,” Journal of American Chemical Society, 96 (1974) 3738-3746.
  • [14] T. Oguchi, A. Ishizaki, Y. Kakuta, et al., “Mechanism of the reactions of butenes with O (3P): The yields of CH3 and C2H5,” Journal of Physical Chemistry A, 108 (2004) 1409-1416.
  • [15] C.A. Taatjes, N. Hansen, A. McIlroy, et al., “Enols are common intermediates in hydrocarbon oxidation,” Science, 308 (2005) 1887-1889.
  • [16] Z. Min, T.H. Wong, H. Su, et al., “Reaction of O (3P) with alkenes: Side chain vs double bond attack,” Journal of Physical Chemistry A, 104 (2000) 9941-9943.
  • [17] B. Messaoudi, S.M. Mekelleche, J. Alvarez-Idaboy, et al., “Theoretical study of the complex reaction of O(3P) with trans-2-butene,” Theoretical Chemistry Accounts, 132 (2012) 1366.
  • [18] B. Messaoudi, S.M. Mekelleche, N. Mora-Diez, “Theoretical study of the complex reaction of O(3P) with cis-2-butene,” Theoretical Chemistry Accounts, 132 (2013) 1394.
  • [19] R.J. Cvetanović, L. Doyle, “Reaction of oxygen atoms with butadiene,” Canadian Journal of Chemistry, 38 (1960) 2187-2195.
  • [20] J. Miller, M. Branch, W. McLean, “Twentieth symposium (international) on combustion,” The Combustion Institute: Pittsburgh, (1984) 673.
  • [21] J.A. Cole, J.D. Bittner, J.P. Longwell, et al., “Formation mechanisms of aromatic compounds in aliphatic flames,” Combustion Flame, 56 (1984) 51-70.
  • [22] P. Dagaut, M. Cathonnet, “The oxidation of 1,3-butadiene: Experimental results and kinetic modeling,” Combustion Science Technology, 140 (1998) 225-257.
  • [23] H. Wang, A. Laskin, Z. Djurisic, et al., “Fall technical meeting of the eastern states,” Section of the combustion institute. Raleigh, NC, (1999) 129-132.
  • [24] A. Laskin, H. Wang, “On initiation reactions of acetylene oxidation in shock tubes: A quantum mechanical and kinetic modeling study,” Chemical Physics Letters, 303 (1999) 43-49.
  • [25] R. Atkinson, J. Pitts Jr, “Absolute rate constants for the reaction of O(3P) atoms with allene, 1,3-butadiene, and vinyl methyl ether over the temperature range 297–439K,” Journal of Chemical Physics, 67 (1977) 2492-2495.
  • [26] W. Nip, D. Singleton, R.J. Cvetanović, “Temperature dependence of rate constants for reaction of oxygen atoms, O(3P), with allene and 1,3-butadiene,” Canadian Journal of Chemistry, 57 (1979) 949-952.
  • [27] D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, “Current status of transition-state theory,” Journal of Physical Chemistry, 100 (1996) 12771-12800.
  • [28] E. Wigner, “The transition state method,” Trans Faraday Society, 34 (1938) 29-41.
  • [29] K.J. Laidler, “Theories of chemical reaction rates,” McGraw-Hill Inc, 1969.
  • [30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Inc., Wallingford CT, 2009.
  • [31] C. Møller, M.S. Plesset, “Note on an approximation treatment for many-electron systems,” Physical Reviews, 46 (1934) 618-622.
  • [32] L.A. Curtiss, K. Raghavachari, P.C. Redfern, et al., “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” Journal of Chemical Physics, 109 (1998) 7764-7776.
  • [33] L.A. Curtiss, K. Raghavachari, “Gaussian-3 and related methods for accurate thermochemistry,” Theoretical Chemistry Accounts, 108 (2002) 61-70.
  • [34] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VII. Use of the minimum population localization method,” Journal of Chemical Physics, 112 (2000) 6532-6542.
  • [35] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” Journal of Chemical Physics, 110 (1999) 2822-2827.
  • [36] C. Gonzalez, H.B. Schlegel, “Reaction path following in mass-weighted internal coordinates,” Journal of Physical Chemistry, 94 (1990) 5523-5527.
  • [37] E. Prosen, F. Maron, F. Rossini, “Heats of combustion, formation, and insomerization of 10 C-4 hydrocarbons,” Journal of Research of the National Institute of Standards and Technology, 46 (1951) 106-112.
  • [38] F. Tureček, “2-hydroxybutadiene: Preparation, ionization energy and heat of formation,” Tetrahedron Letters, 25 (1984) 5133-5134.
  • [39] J. Cox, D.D. Wagman, V.A. Medvedev, “CODATA key values for thermodynamics,” Chem/Mats-Sci/E, 1989.
  • [40] R. Atkinson, S.M. Aschmann, “Kinetics of the reactions of acenaphthene and acenaphthylene and structurally-related aromatic compounds with OH and NO3 radicals, N2O5 and O3 at 296±2 K,” International Journal of Chemical Kinetics, 20 (1988) 513-539.
  • [41] R. Atkinson, S.M. Aschmann, M.A. Goodman, “Kinetics of the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α, β-unsaturated aldehydes,” International Journal of Chemical Kinetics, 19 (1987) 299-307.
  • [42] D.R. Paulson, F.Y. Tang, R.B. Sloane, “Photochemistry of epoxy olefins. II. Photosensitized geometric isomerization and rearrangement of the isomeric 4, 5-epoxy-2-hexenes,” Journal of Organic Chemistry, 38 (1973) 3967-3968.
  • [43] T. Do Minh, A. Trozzolo, G. Griffin, “Low-temperature photochemistry of oxiranes. II. Formation of carbonyl ylides and their stereospecific interconversion with oxiranes,” Journal of American Chemical Society, 92 (1970) 1402-1403.
  • [44] J.P. Guthrie, “Equilibrium constants for a series of simple aldol condensations, and linear free energy relations with other carbonyl addition reactions,” Canadian Journal of Chemistry, 56 (1978) 962-973.
  • [45] D.H. Ess, K.N. Houk, “Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions,” Journal of Physical Chemistry A, 109 (2005) 9542-9553.
  • [46] B. Messaoudi, “Quantum chemical study of the reaction of trichloroethylene with O(3P),” International Journal of Chemical Kinetics, 52 (2020) 589-598.
  • [47] D.L. Singleton, R.J. Cvetanović, “Temperature dependence of the reactions of oxygen atoms with olefins,” Journal of American Chemical Society, 98 (1976) 6812-6819.
  • [48] G.Y. Adusei, A. Fontijn, “Kinetics of the reaction between O(3P) atoms and 1,3-butadiene between 280 and 1015K,” Journal of Physical Chemistry, 97 (1993) 1406-1408.
  • [49] S. Canneaux, F. Bohr, E. Henon, KiSThelP. Version 2019.
Year 2023, Volume: 7 Issue: 2, 1 - 11, 15.05.2023
https://doi.org/10.33435/tcandtc.1144794

Abstract

References

  • [1] R. Atkinson, “Gas-phase tropospheric chemistry of organic compounds: a review,” Atmospheric Environment. Part A. General Topics, 24 (1990) 1-41.
  • [2] B.J. Finlayson-Pitts, J.N. Pitts, “Chemistry of the Upper and Lower Atmosphere,” Academic Press, San Diego, 2000.
  • [3] R.J. Cvetanović, “Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with unsaturated hydrocarbons,” Journal of Physical Chemistry Reference Data, 16 (1987) 261-326.
  • [4] D.L. Baulch, C.T. Bowman, C.J. Cobos, et al., “Evaluated Kinetic Data for Combustion Modeling: Supplement II,” Journal of Physical Chemistry Reference Data, 34 (2005) 757.
  • [5] V.D. Knyazev, V.S. Arutyunov, V.I. Vedeneev, “The mechanism of O(3P) atom reaction with ethylene and other simple olefins,” International Journal of Chemistry Kinetics, 24 (1992) 545-561.
  • [6] T.L. Nguyen, L. Vereecken, X.J. Hou, et al., “Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(XAg):  A comprehensive theoretical study,” Journal of Physical Chemistry A, 109 (2005) 7489-7499.
  • [7] C. Cavallotti, F. Leonori, N. Balucani, et al., “Relevance of the channel leading to formaldehyde + triplet ethylidene in the O(3P) + propene reaction under combustion conditions,” Journal of Physical Chemistry Letters, 5 (2014) 4213-4218.
  • [8] H. Sabbah, L. Biennier, I.R. Sims, et al., “Understanding reactivity at very low temperatures: The reactions of oxygen atoms with alkenes,” Science, 317 (2007) 102-105.
  • [9] P. Zhao, W. Yuan, H. Sun, et al., “Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers,” Proceedings of the Combustion Institute, 35 (2015) 309-316.
  • [10] R.J. Cvetanović, “Reaction of oxygen atoms with ethylene,” Journal of Chemical Physics, 23 (1955) 1375-1380.
  • [11] R.J. Cvetanović, “Biradical intermediate in the addition of the ground state oxygen atoms, O(3P), to olefins,” Journal of Physical Chemistry, 74 (1970) 2730-2732.
  • [12] R. Quandt, Z. Min, X. Wang, et al., “Reactions of O(3P) with alkenes:  H, CH2CHO, CO, and OH channels,” Journal of Physical Chemistry A, 102 (1998) 60-64.
  • [13] S. Hirokami, R.J. Cvetanović, “Reaction of oxygen atoms, O(3P), with olefins in liquid nitrogen solution at 770K,” Journal of American Chemical Society, 96 (1974) 3738-3746.
  • [14] T. Oguchi, A. Ishizaki, Y. Kakuta, et al., “Mechanism of the reactions of butenes with O (3P): The yields of CH3 and C2H5,” Journal of Physical Chemistry A, 108 (2004) 1409-1416.
  • [15] C.A. Taatjes, N. Hansen, A. McIlroy, et al., “Enols are common intermediates in hydrocarbon oxidation,” Science, 308 (2005) 1887-1889.
  • [16] Z. Min, T.H. Wong, H. Su, et al., “Reaction of O (3P) with alkenes: Side chain vs double bond attack,” Journal of Physical Chemistry A, 104 (2000) 9941-9943.
  • [17] B. Messaoudi, S.M. Mekelleche, J. Alvarez-Idaboy, et al., “Theoretical study of the complex reaction of O(3P) with trans-2-butene,” Theoretical Chemistry Accounts, 132 (2012) 1366.
  • [18] B. Messaoudi, S.M. Mekelleche, N. Mora-Diez, “Theoretical study of the complex reaction of O(3P) with cis-2-butene,” Theoretical Chemistry Accounts, 132 (2013) 1394.
  • [19] R.J. Cvetanović, L. Doyle, “Reaction of oxygen atoms with butadiene,” Canadian Journal of Chemistry, 38 (1960) 2187-2195.
  • [20] J. Miller, M. Branch, W. McLean, “Twentieth symposium (international) on combustion,” The Combustion Institute: Pittsburgh, (1984) 673.
  • [21] J.A. Cole, J.D. Bittner, J.P. Longwell, et al., “Formation mechanisms of aromatic compounds in aliphatic flames,” Combustion Flame, 56 (1984) 51-70.
  • [22] P. Dagaut, M. Cathonnet, “The oxidation of 1,3-butadiene: Experimental results and kinetic modeling,” Combustion Science Technology, 140 (1998) 225-257.
  • [23] H. Wang, A. Laskin, Z. Djurisic, et al., “Fall technical meeting of the eastern states,” Section of the combustion institute. Raleigh, NC, (1999) 129-132.
  • [24] A. Laskin, H. Wang, “On initiation reactions of acetylene oxidation in shock tubes: A quantum mechanical and kinetic modeling study,” Chemical Physics Letters, 303 (1999) 43-49.
  • [25] R. Atkinson, J. Pitts Jr, “Absolute rate constants for the reaction of O(3P) atoms with allene, 1,3-butadiene, and vinyl methyl ether over the temperature range 297–439K,” Journal of Chemical Physics, 67 (1977) 2492-2495.
  • [26] W. Nip, D. Singleton, R.J. Cvetanović, “Temperature dependence of rate constants for reaction of oxygen atoms, O(3P), with allene and 1,3-butadiene,” Canadian Journal of Chemistry, 57 (1979) 949-952.
  • [27] D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, “Current status of transition-state theory,” Journal of Physical Chemistry, 100 (1996) 12771-12800.
  • [28] E. Wigner, “The transition state method,” Trans Faraday Society, 34 (1938) 29-41.
  • [29] K.J. Laidler, “Theories of chemical reaction rates,” McGraw-Hill Inc, 1969.
  • [30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Inc., Wallingford CT, 2009.
  • [31] C. Møller, M.S. Plesset, “Note on an approximation treatment for many-electron systems,” Physical Reviews, 46 (1934) 618-622.
  • [32] L.A. Curtiss, K. Raghavachari, P.C. Redfern, et al., “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” Journal of Chemical Physics, 109 (1998) 7764-7776.
  • [33] L.A. Curtiss, K. Raghavachari, “Gaussian-3 and related methods for accurate thermochemistry,” Theoretical Chemistry Accounts, 108 (2002) 61-70.
  • [34] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VII. Use of the minimum population localization method,” Journal of Chemical Physics, 112 (2000) 6532-6542.
  • [35] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” Journal of Chemical Physics, 110 (1999) 2822-2827.
  • [36] C. Gonzalez, H.B. Schlegel, “Reaction path following in mass-weighted internal coordinates,” Journal of Physical Chemistry, 94 (1990) 5523-5527.
  • [37] E. Prosen, F. Maron, F. Rossini, “Heats of combustion, formation, and insomerization of 10 C-4 hydrocarbons,” Journal of Research of the National Institute of Standards and Technology, 46 (1951) 106-112.
  • [38] F. Tureček, “2-hydroxybutadiene: Preparation, ionization energy and heat of formation,” Tetrahedron Letters, 25 (1984) 5133-5134.
  • [39] J. Cox, D.D. Wagman, V.A. Medvedev, “CODATA key values for thermodynamics,” Chem/Mats-Sci/E, 1989.
  • [40] R. Atkinson, S.M. Aschmann, “Kinetics of the reactions of acenaphthene and acenaphthylene and structurally-related aromatic compounds with OH and NO3 radicals, N2O5 and O3 at 296±2 K,” International Journal of Chemical Kinetics, 20 (1988) 513-539.
  • [41] R. Atkinson, S.M. Aschmann, M.A. Goodman, “Kinetics of the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α, β-unsaturated aldehydes,” International Journal of Chemical Kinetics, 19 (1987) 299-307.
  • [42] D.R. Paulson, F.Y. Tang, R.B. Sloane, “Photochemistry of epoxy olefins. II. Photosensitized geometric isomerization and rearrangement of the isomeric 4, 5-epoxy-2-hexenes,” Journal of Organic Chemistry, 38 (1973) 3967-3968.
  • [43] T. Do Minh, A. Trozzolo, G. Griffin, “Low-temperature photochemistry of oxiranes. II. Formation of carbonyl ylides and their stereospecific interconversion with oxiranes,” Journal of American Chemical Society, 92 (1970) 1402-1403.
  • [44] J.P. Guthrie, “Equilibrium constants for a series of simple aldol condensations, and linear free energy relations with other carbonyl addition reactions,” Canadian Journal of Chemistry, 56 (1978) 962-973.
  • [45] D.H. Ess, K.N. Houk, “Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions,” Journal of Physical Chemistry A, 109 (2005) 9542-9553.
  • [46] B. Messaoudi, “Quantum chemical study of the reaction of trichloroethylene with O(3P),” International Journal of Chemical Kinetics, 52 (2020) 589-598.
  • [47] D.L. Singleton, R.J. Cvetanović, “Temperature dependence of the reactions of oxygen atoms with olefins,” Journal of American Chemical Society, 98 (1976) 6812-6819.
  • [48] G.Y. Adusei, A. Fontijn, “Kinetics of the reaction between O(3P) atoms and 1,3-butadiene between 280 and 1015K,” Journal of Physical Chemistry, 97 (1993) 1406-1408.
  • [49] S. Canneaux, F. Bohr, E. Henon, KiSThelP. Version 2019.
There are 49 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Boulanouar Messaoudı 0000-0002-5638-2234

Mouna Cherıet This is me 0000-0002-3535-2220

Rayenne Djemıl This is me 0000-0001-8956-6809

Djameleddine Khatmi 0000-0002-5084-7678

Early Pub Date November 16, 2022
Publication Date May 15, 2023
Submission Date July 20, 2022
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Messaoudı, B., Cherıet, M., Djemıl, R., Khatmi, D. (2023). Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Computational and Theoretical Chemistry, 7(2), 1-11. https://doi.org/10.33435/tcandtc.1144794
AMA Messaoudı B, Cherıet M, Djemıl R, Khatmi D. Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Comp Theo Chem (TC&TC). May 2023;7(2):1-11. doi:10.33435/tcandtc.1144794
Chicago Messaoudı, Boulanouar, Mouna Cherıet, Rayenne Djemıl, and Djameleddine Khatmi. “Quantum Investigation of the Reaction Between Triplet Oxygen O(3P) Atom and Butadiene”. Turkish Computational and Theoretical Chemistry 7, no. 2 (May 2023): 1-11. https://doi.org/10.33435/tcandtc.1144794.
EndNote Messaoudı B, Cherıet M, Djemıl R, Khatmi D (May 1, 2023) Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Computational and Theoretical Chemistry 7 2 1–11.
IEEE B. Messaoudı, M. Cherıet, R. Djemıl, and D. Khatmi, “Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene”, Turkish Comp Theo Chem (TC&TC), vol. 7, no. 2, pp. 1–11, 2023, doi: 10.33435/tcandtc.1144794.
ISNAD Messaoudı, Boulanouar et al. “Quantum Investigation of the Reaction Between Triplet Oxygen O(3P) Atom and Butadiene”. Turkish Computational and Theoretical Chemistry 7/2 (May 2023), 1-11. https://doi.org/10.33435/tcandtc.1144794.
JAMA Messaoudı B, Cherıet M, Djemıl R, Khatmi D. Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Comp Theo Chem (TC&TC). 2023;7:1–11.
MLA Messaoudı, Boulanouar et al. “Quantum Investigation of the Reaction Between Triplet Oxygen O(3P) Atom and Butadiene”. Turkish Computational and Theoretical Chemistry, vol. 7, no. 2, 2023, pp. 1-11, doi:10.33435/tcandtc.1144794.
Vancouver Messaoudı B, Cherıet M, Djemıl R, Khatmi D. Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Comp Theo Chem (TC&TC). 2023;7(2):1-11.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)