Research Article
BibTex RIS Cite

DFT , Monte Carlo and Molecular Dynamics modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction

Year 2024, Volume: 8 Issue: 3, 13 - 22, 19.09.2024
https://doi.org/10.33435/tcandtc.1286725

Abstract

In this work, the interaction of three natural compounds: carvacrol (Inh-1), camphor (Inh-2), and linalool (Inh-3) on the Al(111) surface have been studied using DFT/B3LYP/6-31G(d,p), to understand adsorption behavior on the metal surface. The results obtained show a strong correlation between the inhibitory efficiency (IE%) of aluminum corrosion and the quantum chemical parameters of reactivity derived from DFT. In addition, the interactions between the three natural inhibitors and the aluminum surface were studied using Monte Carlo (MC) and molecular dynamics simulations, as a result, the three molecules have strong interactions with the metal surface and thus have excellent predictive power for inhibition against metal corrosion, the three corrosion inhibitors have higher inhibitory efficiency and can be used as inhibitors to minimize the corrosion rate of the metal, therefore, the efficiency of Inh-1 is more important than the efficiency of Inh-2 and Inh-3.

References

  • [1] C. Vargel, Corrosion of Aluminium, eBook ISBN: 9780080472362, 2004.
  • [2] G. Koch, Cost of corrosion. Elsevier Ltd, eBook ISBN: 9780081012192, 2017
  • [3] R. Lumley, Fundamentals of aluminium metallurgy, 2011.
  • [4] A. Zaki, Elsevier Science and Technology Books, ISBN: 0750659246, 2006.
  • [5] R. Samiee, B. Ramezanzadeh, M. Mahdavian, E. Alibakhshi, Corrosion Inhibition Performance and Healing Ability of a Hybrid Silane Coating in the Presence of Praseodymium (III) Cations, J Electrochem Soc 165 (2018) C777–C786.
  • [6] VS. Hardback, Green corrosion inhibitors: Theory and Practice, Corros Eng Sci Technol 47 (2012) 249–249.
  • [7] X. Zuo, W. Li, W. Luo, Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel corrosion in hydrochloric acid, J Mol Liq 321 (2021) 114914.
  • [8] A. Zakeri, E. Bahmani, A. Aghdam, Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review, Corros Commun 5 (2022) 25–38.
  • [9] T. Benabbouha, R. Nmila, M. Siniti, The brown algae Cystoseira Baccata extract as a friendly corrosion inhibitor on carbon steel in acidic media, SN Appl Sci 2 (2020).
  • [10] T. Benabbouha, M. Siniti, H. El Attari, Red Algae Halopitys Incurvus Extract as a Green Corrosion Inhibitor of Carbon Steel in Hydrochloric Acid, J Bio- Tribo-Corrosion 4 (2018) 10.
  • [11] M. Faustin, A. Maciuk, P. Salvin, Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies, Corros Sci 92 (2015) 287–300.
  • [12] M. Ben Harb, S. Abubshait, N. Etteyeb, Olive leaf extract as a green corrosion inhibitor of reinforced concrete contaminated with seawater, Arab J Chem 13 (2020) 4846–4856.
  • [13] C. Verma, EE. Ebenso, MA. Quraishi, Alkaloids as green and environmental benign corrosion inhibitors : An overview. (2019) 512–528.
  • [14] H. Challouf, N. Souissi, M. Ben Messaouda, Origanum majorana Extracts as Mild Steel Corrosion Green Inhibitors in Aqueous Chloride Medium, J Environ Prot (Irvine, Calif) 07 (2016) 532–544.
  • [15] V. Vorobyova, O. Chygyrynetś, M. Skiba, Self-assembled monoterpenoid phenol as vapor phase atmospheric corrosion inhibitor of carbon steel. Int J Corros Scale Inhib 6 (2017) 485–503.
  • [16] G. Mazzanti, L. Battinelli, G. Salvatore, Antimicrobial properties of the linalol-rich essential oil of Hyssopos officinalis L. var decumbens (Lamiaceae). Flavour Fragr J, 13 (1998) 289–294.
  • [17] BH. Imelouane, JP. Amhamdi, M. Wathelet, K.Ankit, A. Khedid, Chemical Composition and Antimicrobial Activity of Essential Oil of Thyme ( Thymus vulgaris ) from Eastern Morocco, Int J Agric Biol 5 (2009) 205–208.
  • [18] G. Gece, Drugs : A review of promising novel corrosion inhibitors. 53 (2011) 3873–3898.
  • [19] G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros Sci 50 (2008) 2981–2992.
  • [20] RG. Parr, RG. Pearson, Absolute Hardness: Companion Parameter to Absolute Electronegativity, J Am Chem Soc 105 (1983) 7512–7516.
  • [21] LR. Domingo, P. Patricia, The nucleophilicity N index in organic chemistry, 7 (2011) 168–7175.
  • [22] I. Lukovits, E. Kálmán, F. Zucchi, Corrosion inhibitors - Correlation between electronic structure and efficiency, Corrosion 57 (2001) 3–8.
  • [23] VS. Sastri, JR. Perumareddi, Molecular Orbital Theoretical Studies of Some Organic Corrosion Inhibitors, Corros 53 (1997) 617–622.
  • [24] RG. Pearson, Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg Chem 27 (1988) 734–740.
  • [25] AD. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys Rev A 38 (1988) 3098–3100.
  • [26] AD. Becke, gradient correction gradient correction. 2155 (1992).
  • [27] C. Lee, C. Hill, N. Carolina, into a functional of the electron density f f. 37(1988)
  • [28] AMJ. Frisch, Gussian 09, Gaussian Inc, Wallingford CT, (2009)
  • [29] M. J. Frisch, A. B. Nielsm AJH, Gaussview user manual, gaussian Inc., Pittsburgh (2008)
  • [30] P. Taylor, RLC. Akkermans, NA. Spenley, SH. Robertson, Monte Carlo methods in Materials Studio, Mol. Simul. 39 (2013) 1153–1164
  • [31] F. Chiter, C. Lacaze-dufaure, H. Tang, P. Nadine, DFT studies of the bonding mechanism of 8-hydroxyquinoline and derivatives on the (111) aluminum surface. Phys Chem Chem Phys (2015).
  • [32] Y. Tang, X. Yang, W. Yang, A preliminary investigation of corrosion inhibition of mild steel in 0 . 5 M H 2 SO 4 by 2-amino-5- ( n -pyridyl ) -1 , 3 , 4-thiadiazole : Polarization , EIS and molecular dynamics simulations, Corros Sci 52 (2010) 1801–1808.
  • [33] H. Erramli, M. Assouag, A. Elharfi, Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [ 1 M ] HCl : Computational studies ( DFT , MC and MD simulations), Integr Med Res (2020) 1–13.
  • [34] O. Dagdag, A. Berisha, Z. Sa, DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium, Computational and experimental studies. 48402 (2019) 1–10.
  • [35] SK. Saha, A. Dutta, P. Ghosh, Adsorption and corrosion inhibition effect of schiff base molecules on the mild steel surface in 1 M HCL medium: A combined experimental and theoretical approach, Phys Chem Chem Phys 17 (2015) 5679–5690.
  • [36] M. Chafi, S. Byadi, A. Barhoumi, Study of copper removal by modified biomaterials using the response surface methodology, DFT Calculation, and molecular dynamic simulation, J Mol Liq 363 (2022) 119799.
  • [37] SK. Saha, A. Dutta, P. Ghosh, Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: Experimental and theoretical approach. Phys Chem Chem Phys 18 (2016) 17898–17911.
  • [38] A. Matine, A. Barhoumi, Byadi S, A. Zeroual, M. El idrissi, Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study, 27 (2021). J Mol Model.
  • [39] M. Şahin, G. Gece, F. Karcı, S. Bilgiç Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium, J Appl Electrochem 38 (2008) 809–815.
  • [40] M. Özcan, F. Karadaǧ, I. Dehri Interfacial Behavior of Cysteine between Mild Steel and Sulfuric Acid as Corrosion Inhibitor, Acta Phys - Chim Sin 24 (2008) 1387–1392.
  • [41] IB. Obot, ZM. Gasem, Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros Sci 83 (2014) 359–366.
  • [42] RG. Parr, PK. Chattaraj, Principle of Maximum Hardness. J Am Chem Soc 113 (1991) 1854–1855.
  • [43] IB. Obot, DD. Macdonald, ZM. Gasem Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview. Corros Sci 99 (2015) 1–30.
  • [44] MT. Majd, M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh Probing molecular adsorption/interactions and anti-corrosion performance of poppy extract in acidic environments. J Mol Liq 304 (2020) 112750.
  • [45] NO. Eddy, UJ. Ibok, EE. Ebenso, Quantum chemical study of the inhibition of the corrosion of mild steel in H2SO4 by some antibiotics. J Mol Model 15 (2009)1085–1092.
  • [46] VG. Maltarollo, P. Homem-De-mello, KM. Honório Theoretical study on the molecular and electronic properties of some substances used for diabetes mellitus treatment. J Mol Model 16 (2010) 799–804.
  • [47] MA. Quraishi, I. Ahamad, AK. Singh, N-(Piperidinomethyl)-3-[(pyridylidene)amino]isatin: A new and effective acid corrosion inhibitor for mild steel. Mater Chem Phys 112 (2008) 1035–1039.
  • [48] NO. Eddy, EE. Ebenso, Corrosion inhibition and adsorption properties of ethanol extract of Gongronema latifolium on mild steel in H2SO4, Pigment Resin Technol 39 (2010) 77–83.
  • [49] LR. Domingo, P. Pérez, JA. Sáez, Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions, RSC Adv 3 (2013) 1486–1494.
  • [50] K. Fukui, Role of frontier orbitals in chemical reactions, Science (80- ) 218 (1982) 747–754.
  • [51] AC. Balaskas, IA. Kartsonakis, LA. Tziveleka, GC. Kordas, Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO 2 nanocontainers loaded with 8-hydroxyquinoline, Prog Org Coatings 74 (2012) 418–426.
  • [52] AS. Fouda, AA. Al-Sarawy, FS. Ahmed, HM. El-Abbasy, Corrosion inhibition of aluminum 6063 using some pharmaceutical compounds. Prot Met Phys Chem Surfaces 45 (2009) 635–643.
  • [53] ML. Zheludkevich, KA. Yasakau, SK. Poznyak, MGS. Ferreira, Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy, Corros Sci 47 (2005) 3368–3383.
  • [54] L. Romaner, G. Heimel, E. Zojer, Electronic structure of thiol-bonded self-assembled monolayers: Impact of coverage, Phys Rev B - Condens Matter Mater Phys 77 (2008) 1–9.
  • [55] A. Zeroual, M. Ríos-Gutiérrez, M. El idrissi, E.H. El Alaoui, L.R, Domingo, An MEDT study of the mechanism and selectivities of the [3+2] cycloaddition reaction of tomentosin with benzonitrile oxide, International J. of Quantum Chemistry 119 (2019) 1 9.
  • [56] A. Barhoumi, M. El idrissi, A. Zeroual, Theoretical study of the chemical reactivity of a class of trivalent phosphorus derivatives towards polyhaloalkanes: DFT study, J Mol Model 27 (2021) 197.
  • [57] S. Zouitina, A. Aboulouard, A. El Ghazali, A. Tounsi, M. El idrissi, Computational Study of New Small Molecules based Thiophene as Donor Materials for Bulk Heterojunction Photovoltaic Cells. Journal of Fluorescence 23 (2022) 553-563.
  • [58] M. El idrissi, A. Eşme, Y. Hakmaoui, M. Ríos-Gutiérrez, A. Ouled Aitouna, M. Salah, A. Zeroual, LR. Domingo, Divulging the Various Chemical Reactivity of Trifluoromethyl-4-vinyl-benzene as well as Methyl-4-vinyl-benzene in [3+2] Cycloaddition Reactions, Journal of Molecular Graphics and Modelling 102 (2021) 107760.
  • [59] L. Romaner, D. Nabok, P. Puschnig, Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag(111), Au(111) and Cu(111), New J Phys 11 (2009).
  • [60] S. Noury, X. Krokidis, F. Fuster, B. Silvi, Computational tools for the electron localization function topological analysis. Comput Chem 23 (1999) 597–604.
  • [61] M. Messali, M. Larouj, H. Lgaz, A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: Experimental and computer simulations studies. J Mol Struct 1168 (2018) 39–48.
  • [62] K. Mounich, M. Chafi, OL. El Hachemi, A, Tizliouine, W, Wahabi Study and Conception of a Potentiostat at Competitive Prices and its Application for Assessing Aluminum Corrosion Inhibition, J Port Electrochem Soc (2023) 1185–22.
Year 2024, Volume: 8 Issue: 3, 13 - 22, 19.09.2024
https://doi.org/10.33435/tcandtc.1286725

Abstract

References

  • [1] C. Vargel, Corrosion of Aluminium, eBook ISBN: 9780080472362, 2004.
  • [2] G. Koch, Cost of corrosion. Elsevier Ltd, eBook ISBN: 9780081012192, 2017
  • [3] R. Lumley, Fundamentals of aluminium metallurgy, 2011.
  • [4] A. Zaki, Elsevier Science and Technology Books, ISBN: 0750659246, 2006.
  • [5] R. Samiee, B. Ramezanzadeh, M. Mahdavian, E. Alibakhshi, Corrosion Inhibition Performance and Healing Ability of a Hybrid Silane Coating in the Presence of Praseodymium (III) Cations, J Electrochem Soc 165 (2018) C777–C786.
  • [6] VS. Hardback, Green corrosion inhibitors: Theory and Practice, Corros Eng Sci Technol 47 (2012) 249–249.
  • [7] X. Zuo, W. Li, W. Luo, Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel corrosion in hydrochloric acid, J Mol Liq 321 (2021) 114914.
  • [8] A. Zakeri, E. Bahmani, A. Aghdam, Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review, Corros Commun 5 (2022) 25–38.
  • [9] T. Benabbouha, R. Nmila, M. Siniti, The brown algae Cystoseira Baccata extract as a friendly corrosion inhibitor on carbon steel in acidic media, SN Appl Sci 2 (2020).
  • [10] T. Benabbouha, M. Siniti, H. El Attari, Red Algae Halopitys Incurvus Extract as a Green Corrosion Inhibitor of Carbon Steel in Hydrochloric Acid, J Bio- Tribo-Corrosion 4 (2018) 10.
  • [11] M. Faustin, A. Maciuk, P. Salvin, Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies, Corros Sci 92 (2015) 287–300.
  • [12] M. Ben Harb, S. Abubshait, N. Etteyeb, Olive leaf extract as a green corrosion inhibitor of reinforced concrete contaminated with seawater, Arab J Chem 13 (2020) 4846–4856.
  • [13] C. Verma, EE. Ebenso, MA. Quraishi, Alkaloids as green and environmental benign corrosion inhibitors : An overview. (2019) 512–528.
  • [14] H. Challouf, N. Souissi, M. Ben Messaouda, Origanum majorana Extracts as Mild Steel Corrosion Green Inhibitors in Aqueous Chloride Medium, J Environ Prot (Irvine, Calif) 07 (2016) 532–544.
  • [15] V. Vorobyova, O. Chygyrynetś, M. Skiba, Self-assembled monoterpenoid phenol as vapor phase atmospheric corrosion inhibitor of carbon steel. Int J Corros Scale Inhib 6 (2017) 485–503.
  • [16] G. Mazzanti, L. Battinelli, G. Salvatore, Antimicrobial properties of the linalol-rich essential oil of Hyssopos officinalis L. var decumbens (Lamiaceae). Flavour Fragr J, 13 (1998) 289–294.
  • [17] BH. Imelouane, JP. Amhamdi, M. Wathelet, K.Ankit, A. Khedid, Chemical Composition and Antimicrobial Activity of Essential Oil of Thyme ( Thymus vulgaris ) from Eastern Morocco, Int J Agric Biol 5 (2009) 205–208.
  • [18] G. Gece, Drugs : A review of promising novel corrosion inhibitors. 53 (2011) 3873–3898.
  • [19] G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros Sci 50 (2008) 2981–2992.
  • [20] RG. Parr, RG. Pearson, Absolute Hardness: Companion Parameter to Absolute Electronegativity, J Am Chem Soc 105 (1983) 7512–7516.
  • [21] LR. Domingo, P. Patricia, The nucleophilicity N index in organic chemistry, 7 (2011) 168–7175.
  • [22] I. Lukovits, E. Kálmán, F. Zucchi, Corrosion inhibitors - Correlation between electronic structure and efficiency, Corrosion 57 (2001) 3–8.
  • [23] VS. Sastri, JR. Perumareddi, Molecular Orbital Theoretical Studies of Some Organic Corrosion Inhibitors, Corros 53 (1997) 617–622.
  • [24] RG. Pearson, Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg Chem 27 (1988) 734–740.
  • [25] AD. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys Rev A 38 (1988) 3098–3100.
  • [26] AD. Becke, gradient correction gradient correction. 2155 (1992).
  • [27] C. Lee, C. Hill, N. Carolina, into a functional of the electron density f f. 37(1988)
  • [28] AMJ. Frisch, Gussian 09, Gaussian Inc, Wallingford CT, (2009)
  • [29] M. J. Frisch, A. B. Nielsm AJH, Gaussview user manual, gaussian Inc., Pittsburgh (2008)
  • [30] P. Taylor, RLC. Akkermans, NA. Spenley, SH. Robertson, Monte Carlo methods in Materials Studio, Mol. Simul. 39 (2013) 1153–1164
  • [31] F. Chiter, C. Lacaze-dufaure, H. Tang, P. Nadine, DFT studies of the bonding mechanism of 8-hydroxyquinoline and derivatives on the (111) aluminum surface. Phys Chem Chem Phys (2015).
  • [32] Y. Tang, X. Yang, W. Yang, A preliminary investigation of corrosion inhibition of mild steel in 0 . 5 M H 2 SO 4 by 2-amino-5- ( n -pyridyl ) -1 , 3 , 4-thiadiazole : Polarization , EIS and molecular dynamics simulations, Corros Sci 52 (2010) 1801–1808.
  • [33] H. Erramli, M. Assouag, A. Elharfi, Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [ 1 M ] HCl : Computational studies ( DFT , MC and MD simulations), Integr Med Res (2020) 1–13.
  • [34] O. Dagdag, A. Berisha, Z. Sa, DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium, Computational and experimental studies. 48402 (2019) 1–10.
  • [35] SK. Saha, A. Dutta, P. Ghosh, Adsorption and corrosion inhibition effect of schiff base molecules on the mild steel surface in 1 M HCL medium: A combined experimental and theoretical approach, Phys Chem Chem Phys 17 (2015) 5679–5690.
  • [36] M. Chafi, S. Byadi, A. Barhoumi, Study of copper removal by modified biomaterials using the response surface methodology, DFT Calculation, and molecular dynamic simulation, J Mol Liq 363 (2022) 119799.
  • [37] SK. Saha, A. Dutta, P. Ghosh, Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: Experimental and theoretical approach. Phys Chem Chem Phys 18 (2016) 17898–17911.
  • [38] A. Matine, A. Barhoumi, Byadi S, A. Zeroual, M. El idrissi, Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study, 27 (2021). J Mol Model.
  • [39] M. Şahin, G. Gece, F. Karcı, S. Bilgiç Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium, J Appl Electrochem 38 (2008) 809–815.
  • [40] M. Özcan, F. Karadaǧ, I. Dehri Interfacial Behavior of Cysteine between Mild Steel and Sulfuric Acid as Corrosion Inhibitor, Acta Phys - Chim Sin 24 (2008) 1387–1392.
  • [41] IB. Obot, ZM. Gasem, Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros Sci 83 (2014) 359–366.
  • [42] RG. Parr, PK. Chattaraj, Principle of Maximum Hardness. J Am Chem Soc 113 (1991) 1854–1855.
  • [43] IB. Obot, DD. Macdonald, ZM. Gasem Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview. Corros Sci 99 (2015) 1–30.
  • [44] MT. Majd, M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh Probing molecular adsorption/interactions and anti-corrosion performance of poppy extract in acidic environments. J Mol Liq 304 (2020) 112750.
  • [45] NO. Eddy, UJ. Ibok, EE. Ebenso, Quantum chemical study of the inhibition of the corrosion of mild steel in H2SO4 by some antibiotics. J Mol Model 15 (2009)1085–1092.
  • [46] VG. Maltarollo, P. Homem-De-mello, KM. Honório Theoretical study on the molecular and electronic properties of some substances used for diabetes mellitus treatment. J Mol Model 16 (2010) 799–804.
  • [47] MA. Quraishi, I. Ahamad, AK. Singh, N-(Piperidinomethyl)-3-[(pyridylidene)amino]isatin: A new and effective acid corrosion inhibitor for mild steel. Mater Chem Phys 112 (2008) 1035–1039.
  • [48] NO. Eddy, EE. Ebenso, Corrosion inhibition and adsorption properties of ethanol extract of Gongronema latifolium on mild steel in H2SO4, Pigment Resin Technol 39 (2010) 77–83.
  • [49] LR. Domingo, P. Pérez, JA. Sáez, Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions, RSC Adv 3 (2013) 1486–1494.
  • [50] K. Fukui, Role of frontier orbitals in chemical reactions, Science (80- ) 218 (1982) 747–754.
  • [51] AC. Balaskas, IA. Kartsonakis, LA. Tziveleka, GC. Kordas, Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO 2 nanocontainers loaded with 8-hydroxyquinoline, Prog Org Coatings 74 (2012) 418–426.
  • [52] AS. Fouda, AA. Al-Sarawy, FS. Ahmed, HM. El-Abbasy, Corrosion inhibition of aluminum 6063 using some pharmaceutical compounds. Prot Met Phys Chem Surfaces 45 (2009) 635–643.
  • [53] ML. Zheludkevich, KA. Yasakau, SK. Poznyak, MGS. Ferreira, Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy, Corros Sci 47 (2005) 3368–3383.
  • [54] L. Romaner, G. Heimel, E. Zojer, Electronic structure of thiol-bonded self-assembled monolayers: Impact of coverage, Phys Rev B - Condens Matter Mater Phys 77 (2008) 1–9.
  • [55] A. Zeroual, M. Ríos-Gutiérrez, M. El idrissi, E.H. El Alaoui, L.R, Domingo, An MEDT study of the mechanism and selectivities of the [3+2] cycloaddition reaction of tomentosin with benzonitrile oxide, International J. of Quantum Chemistry 119 (2019) 1 9.
  • [56] A. Barhoumi, M. El idrissi, A. Zeroual, Theoretical study of the chemical reactivity of a class of trivalent phosphorus derivatives towards polyhaloalkanes: DFT study, J Mol Model 27 (2021) 197.
  • [57] S. Zouitina, A. Aboulouard, A. El Ghazali, A. Tounsi, M. El idrissi, Computational Study of New Small Molecules based Thiophene as Donor Materials for Bulk Heterojunction Photovoltaic Cells. Journal of Fluorescence 23 (2022) 553-563.
  • [58] M. El idrissi, A. Eşme, Y. Hakmaoui, M. Ríos-Gutiérrez, A. Ouled Aitouna, M. Salah, A. Zeroual, LR. Domingo, Divulging the Various Chemical Reactivity of Trifluoromethyl-4-vinyl-benzene as well as Methyl-4-vinyl-benzene in [3+2] Cycloaddition Reactions, Journal of Molecular Graphics and Modelling 102 (2021) 107760.
  • [59] L. Romaner, D. Nabok, P. Puschnig, Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag(111), Au(111) and Cu(111), New J Phys 11 (2009).
  • [60] S. Noury, X. Krokidis, F. Fuster, B. Silvi, Computational tools for the electron localization function topological analysis. Comput Chem 23 (1999) 597–604.
  • [61] M. Messali, M. Larouj, H. Lgaz, A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: Experimental and computer simulations studies. J Mol Struct 1168 (2018) 39–48.
  • [62] K. Mounich, M. Chafi, OL. El Hachemi, A, Tizliouine, W, Wahabi Study and Conception of a Potentiostat at Competitive Prices and its Application for Assessing Aluminum Corrosion Inhibition, J Port Electrochem Soc (2023) 1185–22.
There are 62 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Fathia Laihemdi 0000-0002-4712-361X

Alı Barhoumi 0000-0002-4712-361X

Brahim Lizoul 0000-0002-4712-361X

Kamilia Mounich 0000-0002-4712-361X

Tariq Benabbouha 0000-0002-4712-361X

Mohammed Chafi 0000-0002-4712-361X

Abdellah Zeroual 0000-0002-4712-361X

El İdrissi Mohammed 0000-0002-4712-361X

Early Pub Date November 29, 2023
Publication Date September 19, 2024
Submission Date May 10, 2023
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Laihemdi, F., Barhoumi, A., Lizoul, B., Mounich, K., et al. (2024). DFT , Monte Carlo and Molecular Dynamics modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction. Turkish Computational and Theoretical Chemistry, 8(3), 13-22. https://doi.org/10.33435/tcandtc.1286725
AMA Laihemdi F, Barhoumi A, Lizoul B, Mounich K, Benabbouha T, Chafi M, Zeroual A, Mohammed Eİ. DFT , Monte Carlo and Molecular Dynamics modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction. Turkish Comp Theo Chem (TC&TC). September 2024;8(3):13-22. doi:10.33435/tcandtc.1286725
Chicago Laihemdi, Fathia, Alı Barhoumi, Brahim Lizoul, Kamilia Mounich, Tariq Benabbouha, Mohammed Chafi, Abdellah Zeroual, and El İdrissi Mohammed. “DFT , Monte Carlo and Molecular Dynamics Modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction”. Turkish Computational and Theoretical Chemistry 8, no. 3 (September 2024): 13-22. https://doi.org/10.33435/tcandtc.1286725.
EndNote Laihemdi F, Barhoumi A, Lizoul B, Mounich K, Benabbouha T, Chafi M, Zeroual A, Mohammed Eİ (September 1, 2024) DFT , Monte Carlo and Molecular Dynamics modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction. Turkish Computational and Theoretical Chemistry 8 3 13–22.
IEEE F. Laihemdi, A. Barhoumi, B. Lizoul, K. Mounich, T. Benabbouha, M. Chafi, A. Zeroual, and E. İ. Mohammed, “DFT , Monte Carlo and Molecular Dynamics modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 3, pp. 13–22, 2024, doi: 10.33435/tcandtc.1286725.
ISNAD Laihemdi, Fathia et al. “DFT , Monte Carlo and Molecular Dynamics Modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction”. Turkish Computational and Theoretical Chemistry 8/3 (September 2024), 13-22. https://doi.org/10.33435/tcandtc.1286725.
JAMA Laihemdi F, Barhoumi A, Lizoul B, Mounich K, Benabbouha T, Chafi M, Zeroual A, Mohammed Eİ. DFT , Monte Carlo and Molecular Dynamics modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction. Turkish Comp Theo Chem (TC&TC). 2024;8:13–22.
MLA Laihemdi, Fathia et al. “DFT , Monte Carlo and Molecular Dynamics Modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 3, 2024, pp. 13-22, doi:10.33435/tcandtc.1286725.
Vancouver Laihemdi F, Barhoumi A, Lizoul B, Mounich K, Benabbouha T, Chafi M, Zeroual A, Mohammed Eİ. DFT , Monte Carlo and Molecular Dynamics modeling of the Carvacrol, Camphor and Linalool /Al(111) Interaction. Turkish Comp Theo Chem (TC&TC). 2024;8(3):13-22.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)