Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 3, 1 - 12, 19.09.2024
https://doi.org/10.33435/tcandtc.1318067

Abstract

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • [1] Z. Y. Sun, X. N. Wang, S. Q. Cheng, X. X. Su, and T. M. Ou, Developing novel G-quadruplex ligands: From interaction with nucleic acids to interfering with nucleic acid–protein interaction, Molecules, 24 (2019) 369-398.
  • [2] Z. Zhang, J. Dai, E. Veliath, R. A. Jones, and D. Yang, Structure of a two-G-tetrad intramolecular G-quadruplex formed by variant human telomeric sequence in K+ solution: Insights into the interconversion of human telomeric G-quadruplex structures, Nucleic Acids Res., 38 (2009) 1009–1021.
  • [3] S. Q. Mao et al., DNA G-quadruplex structures mold the DNA methylome, Nat. Struct. Mol. Biol., 25 (2018) 951–957.
  • [4] T. Fujimoto, D. Miyoshi, H. Tateishi-Karimata, and N. Sugimoto, Thermal stability and hydration state of DNA G-quadruplex regulated by loop regions, Nucleic Acids Symp. Ser., 53 (2009) 237–238.
  • [5] Y. Ding, A. M. Fleming, and C. J. Burrows, Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes, Sci. Rep., 8 (2018) 1–11.
  • [6] T. M. Bryan, G-quadruplexes at telomeres: Friend or foe?, Molecules, 25 (2020) 1-22.
  • [7] D. Varshney, J. Spiegel, K. Zyner, D. Tannahill, and S. Balasubramanian, The regulation and functions of DNA and RNA G-quadruplexes, Nat. Rev. Mol. Cell Biol., 21 (2020) 459–474.
  • [8] N. Kosiol, S. Juranek, P. Brossart, A. Heine, and K. Paeschke, G-quadruplexes: a promising target for cancer therapy, Mol. Cancer, 20 (2021) 1–18.
  • [9] R. I. Mathad, E. Hatzakis, J. Dai, and D. Yang, C-MYC promoter G-quadruplex formed at the 5′-end of NHE III 1 element: Insights into biological relevance and parallel-stranded G-quadruplex stability, Nucleic Acids Res., 39 (2011) 9023–9033.
  • [10] S. Mazzini et al., Stabilization of c-KIT G-quadruplex DNA structures by the RNA polymerase I inhibitors BMH-21 and BA-41, Int. J. Mol. Sci., 20 (2019) 1–17.
  • [11] A. V. Pavlova et al., G-Quadruplex Formed by the Promoter Region of the hTERT Gene: Structure-Driven Effects on DNA Mismatch Repair Functions, Biomedicines, 10 (2022) 1871-1892.
  • [12] X. Tong, W. Lan, X. Zhang, H. Wu, M. Liu, and C. Cao, Solution structure of all parallel G-quadruplex formed by the oncogene RET promoter sequence, Nucleic Acids Res., 39 (2011) 6753–6763.
  • [13] P. Agrawal, E. Hatzakis, K. Guo, M. Carver, and D. Yang, Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: Insights into loop interactions of the parallel G-quadruplexes, Nucleic Acids Res., 41 (2013) 10584–10592.
  • [14] A. D. Edwards, J. C. Marecki, A. K. Byrd, J. Gao, and K. D. Raney, G-Quadruplex loops regulate PARP-1 enzymatic activation, Nucleic Acids Res., 49 (2021) 416–431.
  • [15] S. J. Hewlings and D. S. Kalman, Curcumin: A review of its effects on human health, Foods, 6 (2017) 1–11.
  • [16] A. Rahmani, M. Alsahli, S. Aly, M. Khan, and Y. Aldebasi, Role of Curcumin in Disease Prevention and Treatment, Adv. Biomed. Res., 7 (2018) 38-47.
  • [17] A. L. Lopresti, The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects?, Adv. Nutr., 9 (2018) 41–50.
  • [18] S. I. Sohn et al., Biomedical applications and bioavailability of curcumin—an updated overview, Pharmaceutics, 13 (2021) 1–33.
  • [19] M. E. M. Saeed et al., In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors, Int. J. Mol. Sci., 23 (2022) 3966–3984.
  • [20] A. Roy et al., MurC Ligase of multi-drug resistant Salmonella Typhi can be inhibited by novel Curcumin derivative: Evidence from molecular docking and dynamics simulations, IJBCB, 151 (2022) 106279–106288.
  • [21] R. Debroy and S. Ramaiah, Targeting human telomeric G-quadruplex DNA with curcumin and its synthesized analogues under molecular crowding conditions, RSC Adv., 6 (2016) 7474–7487.
  • [22] A. Roy et al., Curcumin arrests G-quadruplex in the nuclear hyper-sensitive III1 element of c-MYC oncogene leading to apoptosis in metastatic breast cancer cells, J. Biomol. Struct. Dyn., 40 (2022) 10203–10219.
  • [23] N. Pandya et al., Curcumin analogs exhibit anti-cancer activity by selectively targeting G-quadruplex forming c-myc promoter sequence, Biochimie, 180 (2021) 205–221.
  • [24] E. F. Pettersen et al., UCSF Chimera - A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (2004) 1605–1612.
  • [25] S. Dallakyan, A. Olson, Small-Molecule Library Screening by Docking with PyRx, NY: Springer New York, U.S.A, 2015, 243-250.
  • [26] O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem. 17 (2011) 295-304.
  • [27] L. Z. Benet, C. M. Hosey, O. Ursu, and T. I. Oprea, BDDCS, the Rule of 5 and drugability, Adv. Drug Deliv. Rev., 101 (2016) 89–98.
  • [28] A. Daina, O. Michielin, and V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (2017) 1–13.
  • [29] P. Banerjee, A. O. Eckert, A. K. Schrey, and R. Preissner, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 46 (2018) 257–26.
  • [30] https://www.organic-chemistry.org/prog/peo/, January 2017, Accessed: 06.12.2022.
  • [31] J. Tirado-rives and W. L. Jorgensen, Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules, 4 (2008) 297–306.
  • [32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Inc., Wallingford CT, 2009.
  • [33] M. A. Raza, U. Farwa, F. Ishaque, A. G. Al-Sehemi, Designing of Thiazolidinones against Chicken Pox, and Hepatitis Viruses: A Computational Approach, Comput. Biol. Chem., 103 (2023) 1–15.
  • [34] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, and G. R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4 (2012) 1-17.
  • [35] D. M. Miller, S. D. Thomas, A. Islam, D. Muench, and K. Sedoris, c-Myc and cancer metabolism, Clin. Cancer Res., 18 (2012) 5546–5553.
  • [36] A. F. Abdel-Magid, The Potential of c-KIT Kinase inhibitors in Cancer Treatment, ACS Med. Chem. Lett., 12 (2021) 1191–1192.
  • [37] P. Carmeliet, VEGF as a key mediator of angiogenesis in cancer, Oncology, 69 (2005) 4–10.
  • [38] L. Wang et al., PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs, Int. J. Mol. Sci., 18 (2017) 1–16.
  • [39] K. Wang et al., The prognostic significance of hTERT overexpression in cancers, Medicine (Baltimore)., 97 (2018) 11794-11802.
  • [40] M. Takahashi, K. Kawai, and N. Asai, Roles of the RET Proto-oncogene in Cancer and Development , JMA J., 3 (2020) 175–181.
  • [41] A. M. Burger et al., The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function, Cancer Res., 65 (2005) 1489–1496.
  • [42] S. Q. Pantaleão, P. O. Fernandes, J. E. Gonçalves, V. G. Maltarollo, and K. M. Honorio, Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review, ChemMedChem, 17 (2022) 1-13.
  • [43] G. Zbinden and M. Flury-Roversi, Significance of the LD50-test for the toxicological evaluation of chemical substances, Arch. Toxicol., 47 (1981) 77–99.
  • [44] L. Cheng, C. Jin, W. Lv, Q. Ding, and X. Han, Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer, PLoS One, 6 (2011) 1–9.
  • [45] R. B. Weiss and M. C. Christian, New Cisplatin Analogues in Development: A Review, Drugs, 46 (1993) 360–377.
  • [46] M. B. T. Abrama, R. Kacimia, L. Bejjita, M. N. Bennanib, DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical properties of triphenylamine functionalized tetrathiafulvalene, Turkish Comput. Theor. Chem., 2 (2018) 36–48.
  • [47] M. J. Islam, A. Kumer, and M. W. Khan, The theoretical study of anticancer rhodium complexes and methyl groups effect on ligands in chemical reactivity, global descriptors, ADMET by DFT study, Turkish Comput. Theor. Chem., 5 (2021) 1–13.
  • [48] A. K. N. Yuksel and M. F. Fellah, Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage, Turkish Comput. Theor. Chem., 6 (2022) 38–48.
  • [49] J. S. Al-Otaibi, Y. S. Mary, R. Thomas, and S. Kaya, Detailed Electronic Structure, Physico-Chemical Properties, Excited State Properties, Virtual Bioactivity Screening and SERS Analysis of Three Guanine Based Antiviral Drugs Valacyclovir HCl Hydrate, Acyclovir and Ganciclovir, Polycycl. Aromat. Compd., 42 (2022) 1260–1270.

Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters

Year 2024, Volume: 8 Issue: 3, 1 - 12, 19.09.2024
https://doi.org/10.33435/tcandtc.1318067

Abstract

G-Quadruplex (G4) structures are special significant DNA topologies formed by accumulation of G-tetrads which are planar structures of four guanine residues interacting with hydrogen bonds through Hoogsten edges around monovalent cations such as potassium (K) or sodium (Na). While these special topologies are mostly observed in telomere regions, they might be found over regulatory regions of the genes such as promoter, enhancer etc. In addition, since that various oncogenes carry G4 structures over their promoters, it’s highlighted that G4s have significant role over cancer prognosis through regulation of expression level. To date, binding profiles of curcumin having great antioxidant and anti-inflammatory properties and its derivatives to G4s found in telomere regions and promoter of c-Myc were discovered. As such, to discover selective binding profiles of curcumin derivatives to G4s found in promoters of various oncogenes such as c-Myc, c-KIT, hTERT, RET, VEGF, and PARP1 have quite potential in the drug design for several cancer types. In light of these information, 18 curcumin derivatives from ZINC15 database were docked to related G4 structures. ADME and toxicity properties of all derivatives were analyzed and biological reactivity as well as molecular electrostatic surface potential (MESP) features of totally 4 derivatives (C11, C13, C14, and C15) exhibiting selective binding pattern to certain G4s were analyzed with density functional theory (DFT) method.

Project Number

Yok

References

  • [1] Z. Y. Sun, X. N. Wang, S. Q. Cheng, X. X. Su, and T. M. Ou, Developing novel G-quadruplex ligands: From interaction with nucleic acids to interfering with nucleic acid–protein interaction, Molecules, 24 (2019) 369-398.
  • [2] Z. Zhang, J. Dai, E. Veliath, R. A. Jones, and D. Yang, Structure of a two-G-tetrad intramolecular G-quadruplex formed by variant human telomeric sequence in K+ solution: Insights into the interconversion of human telomeric G-quadruplex structures, Nucleic Acids Res., 38 (2009) 1009–1021.
  • [3] S. Q. Mao et al., DNA G-quadruplex structures mold the DNA methylome, Nat. Struct. Mol. Biol., 25 (2018) 951–957.
  • [4] T. Fujimoto, D. Miyoshi, H. Tateishi-Karimata, and N. Sugimoto, Thermal stability and hydration state of DNA G-quadruplex regulated by loop regions, Nucleic Acids Symp. Ser., 53 (2009) 237–238.
  • [5] Y. Ding, A. M. Fleming, and C. J. Burrows, Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes, Sci. Rep., 8 (2018) 1–11.
  • [6] T. M. Bryan, G-quadruplexes at telomeres: Friend or foe?, Molecules, 25 (2020) 1-22.
  • [7] D. Varshney, J. Spiegel, K. Zyner, D. Tannahill, and S. Balasubramanian, The regulation and functions of DNA and RNA G-quadruplexes, Nat. Rev. Mol. Cell Biol., 21 (2020) 459–474.
  • [8] N. Kosiol, S. Juranek, P. Brossart, A. Heine, and K. Paeschke, G-quadruplexes: a promising target for cancer therapy, Mol. Cancer, 20 (2021) 1–18.
  • [9] R. I. Mathad, E. Hatzakis, J. Dai, and D. Yang, C-MYC promoter G-quadruplex formed at the 5′-end of NHE III 1 element: Insights into biological relevance and parallel-stranded G-quadruplex stability, Nucleic Acids Res., 39 (2011) 9023–9033.
  • [10] S. Mazzini et al., Stabilization of c-KIT G-quadruplex DNA structures by the RNA polymerase I inhibitors BMH-21 and BA-41, Int. J. Mol. Sci., 20 (2019) 1–17.
  • [11] A. V. Pavlova et al., G-Quadruplex Formed by the Promoter Region of the hTERT Gene: Structure-Driven Effects on DNA Mismatch Repair Functions, Biomedicines, 10 (2022) 1871-1892.
  • [12] X. Tong, W. Lan, X. Zhang, H. Wu, M. Liu, and C. Cao, Solution structure of all parallel G-quadruplex formed by the oncogene RET promoter sequence, Nucleic Acids Res., 39 (2011) 6753–6763.
  • [13] P. Agrawal, E. Hatzakis, K. Guo, M. Carver, and D. Yang, Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: Insights into loop interactions of the parallel G-quadruplexes, Nucleic Acids Res., 41 (2013) 10584–10592.
  • [14] A. D. Edwards, J. C. Marecki, A. K. Byrd, J. Gao, and K. D. Raney, G-Quadruplex loops regulate PARP-1 enzymatic activation, Nucleic Acids Res., 49 (2021) 416–431.
  • [15] S. J. Hewlings and D. S. Kalman, Curcumin: A review of its effects on human health, Foods, 6 (2017) 1–11.
  • [16] A. Rahmani, M. Alsahli, S. Aly, M. Khan, and Y. Aldebasi, Role of Curcumin in Disease Prevention and Treatment, Adv. Biomed. Res., 7 (2018) 38-47.
  • [17] A. L. Lopresti, The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects?, Adv. Nutr., 9 (2018) 41–50.
  • [18] S. I. Sohn et al., Biomedical applications and bioavailability of curcumin—an updated overview, Pharmaceutics, 13 (2021) 1–33.
  • [19] M. E. M. Saeed et al., In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors, Int. J. Mol. Sci., 23 (2022) 3966–3984.
  • [20] A. Roy et al., MurC Ligase of multi-drug resistant Salmonella Typhi can be inhibited by novel Curcumin derivative: Evidence from molecular docking and dynamics simulations, IJBCB, 151 (2022) 106279–106288.
  • [21] R. Debroy and S. Ramaiah, Targeting human telomeric G-quadruplex DNA with curcumin and its synthesized analogues under molecular crowding conditions, RSC Adv., 6 (2016) 7474–7487.
  • [22] A. Roy et al., Curcumin arrests G-quadruplex in the nuclear hyper-sensitive III1 element of c-MYC oncogene leading to apoptosis in metastatic breast cancer cells, J. Biomol. Struct. Dyn., 40 (2022) 10203–10219.
  • [23] N. Pandya et al., Curcumin analogs exhibit anti-cancer activity by selectively targeting G-quadruplex forming c-myc promoter sequence, Biochimie, 180 (2021) 205–221.
  • [24] E. F. Pettersen et al., UCSF Chimera - A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (2004) 1605–1612.
  • [25] S. Dallakyan, A. Olson, Small-Molecule Library Screening by Docking with PyRx, NY: Springer New York, U.S.A, 2015, 243-250.
  • [26] O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem. 17 (2011) 295-304.
  • [27] L. Z. Benet, C. M. Hosey, O. Ursu, and T. I. Oprea, BDDCS, the Rule of 5 and drugability, Adv. Drug Deliv. Rev., 101 (2016) 89–98.
  • [28] A. Daina, O. Michielin, and V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (2017) 1–13.
  • [29] P. Banerjee, A. O. Eckert, A. K. Schrey, and R. Preissner, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 46 (2018) 257–26.
  • [30] https://www.organic-chemistry.org/prog/peo/, January 2017, Accessed: 06.12.2022.
  • [31] J. Tirado-rives and W. L. Jorgensen, Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules, 4 (2008) 297–306.
  • [32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Inc., Wallingford CT, 2009.
  • [33] M. A. Raza, U. Farwa, F. Ishaque, A. G. Al-Sehemi, Designing of Thiazolidinones against Chicken Pox, and Hepatitis Viruses: A Computational Approach, Comput. Biol. Chem., 103 (2023) 1–15.
  • [34] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, and G. R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4 (2012) 1-17.
  • [35] D. M. Miller, S. D. Thomas, A. Islam, D. Muench, and K. Sedoris, c-Myc and cancer metabolism, Clin. Cancer Res., 18 (2012) 5546–5553.
  • [36] A. F. Abdel-Magid, The Potential of c-KIT Kinase inhibitors in Cancer Treatment, ACS Med. Chem. Lett., 12 (2021) 1191–1192.
  • [37] P. Carmeliet, VEGF as a key mediator of angiogenesis in cancer, Oncology, 69 (2005) 4–10.
  • [38] L. Wang et al., PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs, Int. J. Mol. Sci., 18 (2017) 1–16.
  • [39] K. Wang et al., The prognostic significance of hTERT overexpression in cancers, Medicine (Baltimore)., 97 (2018) 11794-11802.
  • [40] M. Takahashi, K. Kawai, and N. Asai, Roles of the RET Proto-oncogene in Cancer and Development , JMA J., 3 (2020) 175–181.
  • [41] A. M. Burger et al., The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function, Cancer Res., 65 (2005) 1489–1496.
  • [42] S. Q. Pantaleão, P. O. Fernandes, J. E. Gonçalves, V. G. Maltarollo, and K. M. Honorio, Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review, ChemMedChem, 17 (2022) 1-13.
  • [43] G. Zbinden and M. Flury-Roversi, Significance of the LD50-test for the toxicological evaluation of chemical substances, Arch. Toxicol., 47 (1981) 77–99.
  • [44] L. Cheng, C. Jin, W. Lv, Q. Ding, and X. Han, Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer, PLoS One, 6 (2011) 1–9.
  • [45] R. B. Weiss and M. C. Christian, New Cisplatin Analogues in Development: A Review, Drugs, 46 (1993) 360–377.
  • [46] M. B. T. Abrama, R. Kacimia, L. Bejjita, M. N. Bennanib, DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical properties of triphenylamine functionalized tetrathiafulvalene, Turkish Comput. Theor. Chem., 2 (2018) 36–48.
  • [47] M. J. Islam, A. Kumer, and M. W. Khan, The theoretical study of anticancer rhodium complexes and methyl groups effect on ligands in chemical reactivity, global descriptors, ADMET by DFT study, Turkish Comput. Theor. Chem., 5 (2021) 1–13.
  • [48] A. K. N. Yuksel and M. F. Fellah, Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage, Turkish Comput. Theor. Chem., 6 (2022) 38–48.
  • [49] J. S. Al-Otaibi, Y. S. Mary, R. Thomas, and S. Kaya, Detailed Electronic Structure, Physico-Chemical Properties, Excited State Properties, Virtual Bioactivity Screening and SERS Analysis of Three Guanine Based Antiviral Drugs Valacyclovir HCl Hydrate, Acyclovir and Ganciclovir, Polycycl. Aromat. Compd., 42 (2022) 1260–1270.
There are 49 citations in total.

Details

Primary Language English
Subjects Molecular Imaging
Journal Section Research Article
Authors

Hüseyin Saygın Portakal 0000-0002-3582-4152

Project Number Yok
Early Pub Date November 29, 2023
Publication Date September 19, 2024
Submission Date June 21, 2023
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Portakal, H. S. (2024). Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters. Turkish Computational and Theoretical Chemistry, 8(3), 1-12. https://doi.org/10.33435/tcandtc.1318067
AMA Portakal HS. Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters. Turkish Comp Theo Chem (TC&TC). September 2024;8(3):1-12. doi:10.33435/tcandtc.1318067
Chicago Portakal, Hüseyin Saygın. “Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters”. Turkish Computational and Theoretical Chemistry 8, no. 3 (September 2024): 1-12. https://doi.org/10.33435/tcandtc.1318067.
EndNote Portakal HS (September 1, 2024) Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters. Turkish Computational and Theoretical Chemistry 8 3 1–12.
IEEE H. S. Portakal, “Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 3, pp. 1–12, 2024, doi: 10.33435/tcandtc.1318067.
ISNAD Portakal, Hüseyin Saygın. “Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters”. Turkish Computational and Theoretical Chemistry 8/3 (September 2024), 1-12. https://doi.org/10.33435/tcandtc.1318067.
JAMA Portakal HS. Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters. Turkish Comp Theo Chem (TC&TC). 2024;8:1–12.
MLA Portakal, Hüseyin Saygın. “Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 3, 2024, pp. 1-12, doi:10.33435/tcandtc.1318067.
Vancouver Portakal HS. Selective Binding Profiles of Curcumin Derivatives to G-Quadruplex (G4) Structures Found in Human Oncogene Promoters. Turkish Comp Theo Chem (TC&TC). 2024;8(3):1-12.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)