Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 3, 54 - 65, 19.09.2024
https://doi.org/10.33435/tcandtc.1334817

Abstract

References

  • [1] A. H. Al-Moubaraki, I. B. Obot, Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. Journal of Saudi Chemical Society 25 (2021) 101370.
  • [2] A. El-Meligi, Corrosion preventive strategies as a crucial need for decreasing environmental pollution and saving economics. Recent Patents on Corrosion Science 2 (2010) 22-33.
  • [3] A.Chaouiki, H. Lgaz, I. M. Chung, et al., Understanding corrosion inhibition of mild steel in acid medium by new benzonitriles: Insights from experimental and computational studies. Journal of Molecular Liquids 266 (2018) 603-616.
  • [4] M. V. Fiori-Bimbi, P. E. Alvarez, H. Vaca, et al., Corrosion inhibition of mild steel in HCl solution by pectin. Corrosion Science 92 (2015) 192-199.
  • [5] M. Bouklah, N. Benchat, B. Hammouti, et al., Thermodynamic characterisation of steel corrosion and inhibitor adsorption of pyridazine compounds in 0.5 M H2SO4. Materials Letters 60 (2006) 1901-1905.
  • [6] M. Bouklah, B. Hammouti, A. Aouniti, et al., Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5 M H2SO4. Progress in Organic Coatings 49 (2004) 225-228.
  • [7] L. Guo, Z. S. Safi, S. Kaya, et al., Anticorrosive effects of some thiophene derivatives against the corrosion of iron: A computational study. Frontiers in Chemistry 6 (2018) 155-160.
  • [8] J. M. Bockris, D. Swinkels, The relative electrocatalytic activity of noble metals in the oxidation of ethylene. Journal of The Electrochemical Society 111 (1964) 736.
  • [9] P. K. Yadav, O. Prakash, B. Ray, et al., Functionalized polythiophene for corrosion inhibition and photovoltaic application. Journal of Applied Polymer Science 138 (2021) 51306.
  • [10] A. Fouda, A. Attia, A. Negm, Some thiophene derivatives as corrosion inhibitors for carbon steel in hydrochloric acid. Journal of Metallurgy 2014 (2014) 1-15.
  • [11] D. K. Verma, Density functional theory (DFT) as a powerful tool for designing corrosion inhibitors in aqueous phase. Advanced Engineering Testing 87 (2018).
  • [12] T. Attar, F. Nouali, Z. Kibou, et al., Corrosion inhibition, adsorption and thermodynamic properties of 2-aminopyridine derivatives on the corrosion of carbon steel in sulfuric acid solution. Journal of Chemical Sciences 133 (2021) 109-118.
  • [13] O. Benali, I. Larabi, M. Traisnel, et al., Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4. Applied Surface Science 253 (2007) 6130-6139.
  • [14] M. Sahin, G. Gece, E. Karei, et al., Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium. Journal of Applied Electrochemistry 38 (2008) 809-815.
  • [15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Inc., Wallingford CT, (2009).
  • [16] R. G. Parr, W. Yang, Density-functional theory of atoms and molecules. Oxford Univ. Press, Oxford, (1989).
  • [17] J. A. Pople, P. M. W. Gill, B. G. Johnson, Kohn-Sham density-functional theory within a finite basis set. Chemical Physics Letter 199 (1992) 557-60.
  • [18] J. Tirado-Rives, W. L. Jorgensen, Performance of B3lyp density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation 2 (2008) 297-306.
  • [19] L. Lu, Can B3LYP be improved by optimization of the proportions of exchange and correlation functionals? International Journal of Quantum Chemistry 115 (2015) 471-476.
  • [20] F. Islam, M. R. Rahman, M. M. Matin, The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Computational and Theoretical Chemistry 5 (2021) 39-50.
  • [21] N. V. Bondarev, K. P. Katin, V. B. Merinov, et al., Probing of Neural Networks as a Bridge from Ab Initio Relevant Characteristics to Differential Scanning Calorimetry Measurements of High‐Energy Compounds. Physica Status Solidi (RRL)–Rapid Research Letters 16 (2022) 2100191.
  • [22] T. Attar, A. Benchadli, B. Messaoudi, et al., Experimental and theoretical studies of eosin Y dye as corrosion inhibitors for carbon steel in perchloric acid solution. Bulletin of Chemical Reaction Engineering & Catalysis 15 (2020) 454-464.
  • [23] P. K. Chattaraj, U. Sarkar, D. R. Roy, Electrophilicity index. Chemical Review 106 (2006) 2065-2091.
  • [24] L. R. Domingo, P. Pérez, The nucleophilicity N index in organic chemistry. Organic & Biomolecular Chemistry 9 (2011) 7168-7175.
  • [25] R.G. Parr, W. Yang, Density functional approach to the frontier-electron theory of chemical reactivity. Journal of American Chemical Society 106 (1984) 4049-4050.
  • [26] L. R. Domingo, P. Pérez, J. A. Sáez, Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC advances 3 (2013) 1486-1494.
  • [27] S. Jorio, M. Salah, H. Abou El Makarim, et al., Reactivity indices related to DFT theory, the electron localization function (ELF) and non-covalent interactions (NCI) calculations in the formation of the non-halogenated pyruvic esters in solution. Mediterranean Journal of Chemistry 8 (2019) 476-485.
  • [28] M. Zoubir, A. Zeroual, M. El Idrissi, et al., Understanding the chemoselectivity and stereoselectivity in Michael addition reactions of β-hydroxyparthenolides and amines such as pyrrolidine, morpholine, piperidine and 1-methylpiperazine: a DFT study. Journal of Materials and Environmental Science 8 (2017) 990-996.
  • [29] M. S. M. Ahmed, A. E. Mekky, S. M. Sanad, Regioselective [3+2] cycloaddition synthesis and theoretical calculations of new chromene-pyrazole hybrids: A DFT-based Parr Function, Fukui Function, local reactivity indexes, and MEP analysis. Journal of Molecular Structure 1267 (2022) 133583.
  • [30] L. R. Domingo, M. Ríos-Gutiérrez, Application of reactivity indices in the study of polar Diels-Alder reactions. Conceptual density functional theory: Towards a new chemical reactivity theory 2 (2022) 481-502.
  • [31] P. Fuentealba, J. Melin, Atomic spin-density polarization index and atomic spin-density information entropy distance. International Journal of Quantum Chemistry 90 (2002) 334-341.
  • [32] I. Lukovits, E. Kalman, F. Zucchi, Corrosion inhibitors-correlation between electronic structure and efficiency. Corrosion 57 (2001) 3-8.
  • [33] L. Guo, S. Zhu, S. Zhang, et al., Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corrosion Science 87 (2014) 366-375.
  • [34] A. Zarrouk, B. Hammouti, A. Dafali, et al., A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. Journal of Saudi Chemical Society 18(2014) 450-455.
  • [35] H. Herrera-Hernández, M. Abreu-Quijano, M. Palomar-Pardavé, et al., Quantum chemical study of 2-mercaptoimidazole, 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole and 2-mercapto-5-nitrobenzimidazole as corrosion inhibitors for steel. International Journal of Electrochemical Science 6 (2011) 3729-3742.
  • [36] S. Cao, D. Liu, H. Ding, et al., Task-specific ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: An experimental and theoretical study. Corrosion Science 153 (2019) 301-313.
  • [37] E. A. M. Gad, E. M. S. Azzam, S. A. Halim, Theoretical approach for the performance of 4-mercapto-1-alkylpyridin-1-ium bromide as corrosion inhibitors using DFT. Egyptian journal of petroleum 27 (2018) 695-699.
  • [38] H. Kumar, V. Yadav, A. Kumari, Adsorption, corrosion inhibition mechanism, and computational studies of Azadirachtaindica extract for protecting mild steel: Sustainable and green approach. Journal of Physics and Chemistry of Solids 165 (2022) 110690.
  • [39] T. Attar, A. Benchadli, B. Messaoudi, et al., Corrosion inhibition, adsorption and thermodynamic properties of poly (sodium 4-styrenesulfonate) on carbon steel in phosphoric acid medium. French-Ukrainian Journal of Chemistry 10 (2022) 70-83.
  • [40] T. Attar, A. Benchadli, B. Messaoudi, et al., Corrosion inhibition efficiency, experimental and quantum chemical studies of neutral red dye for carbon steel in perchloric acidic media. Chemistry & Chemical Technology 16 (2022) 440-447.
  • [41] M. Atilhan, T. Altamash, S. Aparicio, Quantum chemistry insight into the interactions between deep eutectic solvents and SO2. Molecules 24 (2019) 2963.
  • [42] F. Zhang, B. Liu, G. Liu, et al., Substructure-activity relationship studies on antibody recognition for phenylurea compounds using competitive immunoassay and computational chemistry. Scientific Reports 8 (2018) 3131.
  • [43] P. C. Rathi, R. F. Ludlow, M. L. Verdonk, Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network. Journal of Medicinal Chemistry 63 (2020) 8778-8790.
  • [44] Y. M. Chai, H. B. Zhang, X. Y. Zhang, et al., X-ray structures, spectroscopic, antimicrobial activity, ESP/HSA and TD/DFT calculations of Bi (III) complex containing imidazole ring. Journal of Molecular Structure 1256 (2022) 132517.
  • [45] S. Boukhssas, Y. Aouine, H. Faraj, et al., Hirshfeld Surface Analysis and DFT calculations of 1-phenyl-N- (benzomethyl)-N-({1-[(2-benzo-4-methyl-4,5-dihydro-1,3-oxazol-4-yl)methyl]- 1H-1,2,3-triazol-4-yl}methyl)methanamine. Journal of Materials and Environmental Sciences 9 (2018) 2254-2262.
  • [46] A. Al-Amiery, T. A. Salman, K. F. Alazawi, et al., Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. International Journal of Low-Carbon Technologies 15 (2020) 202-209.
  • [47] E. E. Oguzie, Y. Li, F. H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. Journal of Colloid and Interface Science 310 (2007) 90-98.

Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules

Year 2024, Volume: 8 Issue: 3, 54 - 65, 19.09.2024
https://doi.org/10.33435/tcandtc.1334817

Abstract

A theoretical study of the inhibition efficiency of three organic heterocyclic molecules has been thoroughly probed using density functional theory B3LYP/6-31G(d) level. The calculated global quantities such as electrophilicity and nucleophilicity show that the three organic inhibitors are nucleophiles. The obtained values of charge transfer and energy of back-donation show that the 2-amino-4-(4-bromophenyl)thiophene-3-carbonitrile is the best inhibitor. Parr function indices have been calculated to determine the most preferred sites for the nucleophilic attacks towards the electrophilic transition metal surface of copper. The electrostatic surface potential has been mapped in order to explore the major regions of the molecules responsible of the inhibition. It is found that the zone surrounding the nitrogen atom and the -aromatic system of benzene are the one forming the protection layer. The theoretical results are in good commitment with the experimental results.

References

  • [1] A. H. Al-Moubaraki, I. B. Obot, Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. Journal of Saudi Chemical Society 25 (2021) 101370.
  • [2] A. El-Meligi, Corrosion preventive strategies as a crucial need for decreasing environmental pollution and saving economics. Recent Patents on Corrosion Science 2 (2010) 22-33.
  • [3] A.Chaouiki, H. Lgaz, I. M. Chung, et al., Understanding corrosion inhibition of mild steel in acid medium by new benzonitriles: Insights from experimental and computational studies. Journal of Molecular Liquids 266 (2018) 603-616.
  • [4] M. V. Fiori-Bimbi, P. E. Alvarez, H. Vaca, et al., Corrosion inhibition of mild steel in HCl solution by pectin. Corrosion Science 92 (2015) 192-199.
  • [5] M. Bouklah, N. Benchat, B. Hammouti, et al., Thermodynamic characterisation of steel corrosion and inhibitor adsorption of pyridazine compounds in 0.5 M H2SO4. Materials Letters 60 (2006) 1901-1905.
  • [6] M. Bouklah, B. Hammouti, A. Aouniti, et al., Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5 M H2SO4. Progress in Organic Coatings 49 (2004) 225-228.
  • [7] L. Guo, Z. S. Safi, S. Kaya, et al., Anticorrosive effects of some thiophene derivatives against the corrosion of iron: A computational study. Frontiers in Chemistry 6 (2018) 155-160.
  • [8] J. M. Bockris, D. Swinkels, The relative electrocatalytic activity of noble metals in the oxidation of ethylene. Journal of The Electrochemical Society 111 (1964) 736.
  • [9] P. K. Yadav, O. Prakash, B. Ray, et al., Functionalized polythiophene for corrosion inhibition and photovoltaic application. Journal of Applied Polymer Science 138 (2021) 51306.
  • [10] A. Fouda, A. Attia, A. Negm, Some thiophene derivatives as corrosion inhibitors for carbon steel in hydrochloric acid. Journal of Metallurgy 2014 (2014) 1-15.
  • [11] D. K. Verma, Density functional theory (DFT) as a powerful tool for designing corrosion inhibitors in aqueous phase. Advanced Engineering Testing 87 (2018).
  • [12] T. Attar, F. Nouali, Z. Kibou, et al., Corrosion inhibition, adsorption and thermodynamic properties of 2-aminopyridine derivatives on the corrosion of carbon steel in sulfuric acid solution. Journal of Chemical Sciences 133 (2021) 109-118.
  • [13] O. Benali, I. Larabi, M. Traisnel, et al., Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4. Applied Surface Science 253 (2007) 6130-6139.
  • [14] M. Sahin, G. Gece, E. Karei, et al., Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium. Journal of Applied Electrochemistry 38 (2008) 809-815.
  • [15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Inc., Wallingford CT, (2009).
  • [16] R. G. Parr, W. Yang, Density-functional theory of atoms and molecules. Oxford Univ. Press, Oxford, (1989).
  • [17] J. A. Pople, P. M. W. Gill, B. G. Johnson, Kohn-Sham density-functional theory within a finite basis set. Chemical Physics Letter 199 (1992) 557-60.
  • [18] J. Tirado-Rives, W. L. Jorgensen, Performance of B3lyp density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation 2 (2008) 297-306.
  • [19] L. Lu, Can B3LYP be improved by optimization of the proportions of exchange and correlation functionals? International Journal of Quantum Chemistry 115 (2015) 471-476.
  • [20] F. Islam, M. R. Rahman, M. M. Matin, The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Computational and Theoretical Chemistry 5 (2021) 39-50.
  • [21] N. V. Bondarev, K. P. Katin, V. B. Merinov, et al., Probing of Neural Networks as a Bridge from Ab Initio Relevant Characteristics to Differential Scanning Calorimetry Measurements of High‐Energy Compounds. Physica Status Solidi (RRL)–Rapid Research Letters 16 (2022) 2100191.
  • [22] T. Attar, A. Benchadli, B. Messaoudi, et al., Experimental and theoretical studies of eosin Y dye as corrosion inhibitors for carbon steel in perchloric acid solution. Bulletin of Chemical Reaction Engineering & Catalysis 15 (2020) 454-464.
  • [23] P. K. Chattaraj, U. Sarkar, D. R. Roy, Electrophilicity index. Chemical Review 106 (2006) 2065-2091.
  • [24] L. R. Domingo, P. Pérez, The nucleophilicity N index in organic chemistry. Organic & Biomolecular Chemistry 9 (2011) 7168-7175.
  • [25] R.G. Parr, W. Yang, Density functional approach to the frontier-electron theory of chemical reactivity. Journal of American Chemical Society 106 (1984) 4049-4050.
  • [26] L. R. Domingo, P. Pérez, J. A. Sáez, Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC advances 3 (2013) 1486-1494.
  • [27] S. Jorio, M. Salah, H. Abou El Makarim, et al., Reactivity indices related to DFT theory, the electron localization function (ELF) and non-covalent interactions (NCI) calculations in the formation of the non-halogenated pyruvic esters in solution. Mediterranean Journal of Chemistry 8 (2019) 476-485.
  • [28] M. Zoubir, A. Zeroual, M. El Idrissi, et al., Understanding the chemoselectivity and stereoselectivity in Michael addition reactions of β-hydroxyparthenolides and amines such as pyrrolidine, morpholine, piperidine and 1-methylpiperazine: a DFT study. Journal of Materials and Environmental Science 8 (2017) 990-996.
  • [29] M. S. M. Ahmed, A. E. Mekky, S. M. Sanad, Regioselective [3+2] cycloaddition synthesis and theoretical calculations of new chromene-pyrazole hybrids: A DFT-based Parr Function, Fukui Function, local reactivity indexes, and MEP analysis. Journal of Molecular Structure 1267 (2022) 133583.
  • [30] L. R. Domingo, M. Ríos-Gutiérrez, Application of reactivity indices in the study of polar Diels-Alder reactions. Conceptual density functional theory: Towards a new chemical reactivity theory 2 (2022) 481-502.
  • [31] P. Fuentealba, J. Melin, Atomic spin-density polarization index and atomic spin-density information entropy distance. International Journal of Quantum Chemistry 90 (2002) 334-341.
  • [32] I. Lukovits, E. Kalman, F. Zucchi, Corrosion inhibitors-correlation between electronic structure and efficiency. Corrosion 57 (2001) 3-8.
  • [33] L. Guo, S. Zhu, S. Zhang, et al., Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corrosion Science 87 (2014) 366-375.
  • [34] A. Zarrouk, B. Hammouti, A. Dafali, et al., A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. Journal of Saudi Chemical Society 18(2014) 450-455.
  • [35] H. Herrera-Hernández, M. Abreu-Quijano, M. Palomar-Pardavé, et al., Quantum chemical study of 2-mercaptoimidazole, 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole and 2-mercapto-5-nitrobenzimidazole as corrosion inhibitors for steel. International Journal of Electrochemical Science 6 (2011) 3729-3742.
  • [36] S. Cao, D. Liu, H. Ding, et al., Task-specific ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: An experimental and theoretical study. Corrosion Science 153 (2019) 301-313.
  • [37] E. A. M. Gad, E. M. S. Azzam, S. A. Halim, Theoretical approach for the performance of 4-mercapto-1-alkylpyridin-1-ium bromide as corrosion inhibitors using DFT. Egyptian journal of petroleum 27 (2018) 695-699.
  • [38] H. Kumar, V. Yadav, A. Kumari, Adsorption, corrosion inhibition mechanism, and computational studies of Azadirachtaindica extract for protecting mild steel: Sustainable and green approach. Journal of Physics and Chemistry of Solids 165 (2022) 110690.
  • [39] T. Attar, A. Benchadli, B. Messaoudi, et al., Corrosion inhibition, adsorption and thermodynamic properties of poly (sodium 4-styrenesulfonate) on carbon steel in phosphoric acid medium. French-Ukrainian Journal of Chemistry 10 (2022) 70-83.
  • [40] T. Attar, A. Benchadli, B. Messaoudi, et al., Corrosion inhibition efficiency, experimental and quantum chemical studies of neutral red dye for carbon steel in perchloric acidic media. Chemistry & Chemical Technology 16 (2022) 440-447.
  • [41] M. Atilhan, T. Altamash, S. Aparicio, Quantum chemistry insight into the interactions between deep eutectic solvents and SO2. Molecules 24 (2019) 2963.
  • [42] F. Zhang, B. Liu, G. Liu, et al., Substructure-activity relationship studies on antibody recognition for phenylurea compounds using competitive immunoassay and computational chemistry. Scientific Reports 8 (2018) 3131.
  • [43] P. C. Rathi, R. F. Ludlow, M. L. Verdonk, Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network. Journal of Medicinal Chemistry 63 (2020) 8778-8790.
  • [44] Y. M. Chai, H. B. Zhang, X. Y. Zhang, et al., X-ray structures, spectroscopic, antimicrobial activity, ESP/HSA and TD/DFT calculations of Bi (III) complex containing imidazole ring. Journal of Molecular Structure 1256 (2022) 132517.
  • [45] S. Boukhssas, Y. Aouine, H. Faraj, et al., Hirshfeld Surface Analysis and DFT calculations of 1-phenyl-N- (benzomethyl)-N-({1-[(2-benzo-4-methyl-4,5-dihydro-1,3-oxazol-4-yl)methyl]- 1H-1,2,3-triazol-4-yl}methyl)methanamine. Journal of Materials and Environmental Sciences 9 (2018) 2254-2262.
  • [46] A. Al-Amiery, T. A. Salman, K. F. Alazawi, et al., Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. International Journal of Low-Carbon Technologies 15 (2020) 202-209.
  • [47] E. E. Oguzie, Y. Li, F. H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. Journal of Colloid and Interface Science 310 (2007) 90-98.
There are 47 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Article
Authors

Boulanouar Messaoudı 0000-0002-5638-2234

Yazid Datousaıd 0000-0002-1696-5320

Hadjer Mıssoum 0000-0003-1366-8096

Abbes Benchadlı 0009-0001-1807-5663

Ismail Bilal Chatı 0009-0008-7895-0950

Tarik Attar 0000-0003-2355-1924

Early Pub Date March 4, 2024
Publication Date September 19, 2024
Submission Date July 31, 2023
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Messaoudı, B., Datousaıd, Y., Mıssoum, H., Benchadlı, A., et al. (2024). Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules. Turkish Computational and Theoretical Chemistry, 8(3), 54-65. https://doi.org/10.33435/tcandtc.1334817
AMA Messaoudı B, Datousaıd Y, Mıssoum H, Benchadlı A, Chatı IB, Attar T. Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules. Turkish Comp Theo Chem (TC&TC). September 2024;8(3):54-65. doi:10.33435/tcandtc.1334817
Chicago Messaoudı, Boulanouar, Yazid Datousaıd, Hadjer Mıssoum, Abbes Benchadlı, Ismail Bilal Chatı, and Tarik Attar. “Investigating the Corrosion Inhibition of Copper Using DFT Theoretical Study With Three Organic Molecules”. Turkish Computational and Theoretical Chemistry 8, no. 3 (September 2024): 54-65. https://doi.org/10.33435/tcandtc.1334817.
EndNote Messaoudı B, Datousaıd Y, Mıssoum H, Benchadlı A, Chatı IB, Attar T (September 1, 2024) Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules. Turkish Computational and Theoretical Chemistry 8 3 54–65.
IEEE B. Messaoudı, Y. Datousaıd, H. Mıssoum, A. Benchadlı, I. B. Chatı, and T. Attar, “Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 3, pp. 54–65, 2024, doi: 10.33435/tcandtc.1334817.
ISNAD Messaoudı, Boulanouar et al. “Investigating the Corrosion Inhibition of Copper Using DFT Theoretical Study With Three Organic Molecules”. Turkish Computational and Theoretical Chemistry 8/3 (September 2024), 54-65. https://doi.org/10.33435/tcandtc.1334817.
JAMA Messaoudı B, Datousaıd Y, Mıssoum H, Benchadlı A, Chatı IB, Attar T. Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules. Turkish Comp Theo Chem (TC&TC). 2024;8:54–65.
MLA Messaoudı, Boulanouar et al. “Investigating the Corrosion Inhibition of Copper Using DFT Theoretical Study With Three Organic Molecules”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 3, 2024, pp. 54-65, doi:10.33435/tcandtc.1334817.
Vancouver Messaoudı B, Datousaıd Y, Mıssoum H, Benchadlı A, Chatı IB, Attar T. Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules. Turkish Comp Theo Chem (TC&TC). 2024;8(3):54-65.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)