Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 4, 48 - 61, 02.12.2024
https://doi.org/10.33435/tcandtc.1437517

Abstract

References

  • [1] H. Nagai, Y.H. Kim, Cancer prevention from the perspective of global cancer burden patterns, Journal of Thoracic Disease 9 (2017) 448-451.
  • [2] R.I. Teleanu, C. Chircov, A.M. Grumezescu, D.M. Teleanu, Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment, Journal of Clinical Medicine 9 (2000) 84.
  • [3] P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases, Nature. 407 (2000) 249-257.
  • [4] S. Jiang, R. Fu, J. Shi, H. Wu, J. Mai, X. Hua, H. Chen, J. Liu, M. Lu and N. Li, CircRNA-Mediated Regulation of Angiogenesis: A New Chapter in Cancer Biology, Frontiers in Oncology 11 (2021) 553706.
  • [5] S. P. Ivy, J.Y. Wick, B.M. Kaufman, An overview of small-molecule inhibitors of VEGFR signaling, Nature Reviews Clinical Oncology 6 (2009) 569-579.
  • [6] Y. Tanrikulu, B. Krüger, E. Proschak, The holistic integration of virtual screening in drug discovery, Drug Discovery Today 18 (2013) 358-364.
  • [7] C. Wiesmann, G. Fuh, H. W. Christinger, C. Eigenbrot, J. A. Wells, A. M. De Vos, Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor, Cellule 9 (1997) 695-704.
  • [8] M. Shibuya, Vascular endothelial growth factor (VEGF)-receptor 2: its biological functions, major signaling pathway, and specific ligand VEGF-E, Endothelium 13 (2006) 63-69.
  • [9] D. Kang, X. Pang, W. Lian, L. Xu, J. Wang, H. Jia, B. Zhang, A. Liu, G. Du, Discovery of VEGFR2 inhibitors by integrating naïve Bayesian classification, molecular docking and drug screening approaches, RSC Advances 8 (2018) 5286-5297.
  • [10] S. Saraswati, P. K. Kanaujia, S. Kumar, R. Kumar, A. A. Alhaider, Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2–mediated angiogenesis, Molecular Cancer 12 (2013) 1-16.
  • [11] T. T. Kamba, D. M. McDonald, Mechanisms of adverse effects of anti-VEGF therapy for cancer, British Journal of Cancer 96 (2007) 1788-1795.
  • [12] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, R. G. Coleman, ZINC: A Free Tool to Discover Chemistry for Biology, Journal of Chemical Information and Modeling 52 (2012) 1757-1768.
  • [13] W. P. Walters, M. T. Stahl, M. A. Murcko, A virtual screening: an overview, Drug Discovery Today 3 (1998) 160-178.
  • [14] T. Hou, X. Xu, Recent Development and Application of Virtual Screening in Drug Discovery: An Overview, Current Pharmaceutical Design 10 (2004) 1011-1033.
  • [15] I. Muegge, S. Oloff, Advances in virtual screening, Drug Discovery Today : Technologies 3 (2006) 405-411.
  • [16] S. Kar, K. Roy, How far can virtual screening take us in drug discovery? Expert Opinion on Drug Discovery 8 (2013) 245-261.
  • [17] B. Kramer, M. Rarey, T. Lengauer, Evaluation of the FlexX Incremental Construction Algorithm for Protein–Ligand Docking, Proteins: Structure, Function, and Genetics 37 (1999) 228-241.
  • [18] H.J. Böhm, The computer program LUDI: a new method for de novo design of enzyme inhibitors, Journal of Computer-aided Molecular Design 6 (1992) 61-78.
  • [19] M. Rarey, B. Kramer, T. Lengauer, G. Klebe, A Fast Flexible Docking Method Using an Incremental Construction Algorithm, Journal of Molecular Biology 261 (1996) 470-489.
  • [20] L. G. Ferreira, R. N. Dos Santos, G. Oliva, A. D. Andricopulo, Molecular docking and structure-based drug design strategies, Molecules 20 (2015) 13384-13421.
  • [21] M. Rarey, B. Kramer, T. Lengauer, Multiple automatic base selection: protein-ligand docking based on incremental construction without manual intervention, Journal of Computer-Aided Molecular Design 11 (1997) 369-384.
  • [22] Y. Oguro, N. Miyamoto, K. Okada, T. Takagi, H. Iwata, Y. Awazu, H. Miki, A. Hori, K. Kamiyama, S. Imamura, Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5H-pyrrolo [3, 2-d]pyrimidine derivatives: Novel VEGFR2 kinase inhibitors binding to inactive kinase conformation, Bioorganic & Medicinal Chemistry 18 (2010) 7260-73.
  • [23] J. J. Irwin, B. K. Shoichet, ZINC − A Free Database of Commercially Available Compounds for Virtual Screening, Journal of Chemical Information and Modeling 45 (2005) 177-182.
  • [24] R. W. Spencer, Diversity Analysis in high throughput screening, Journal of Biomolecular Screening 2 (1997) 69-70.
  • [25] F. Rohani, S. H. K. Hosseini, D. Hosseini, S. Bahaloo, S. Ghiabi, E. H. Soureshjani, S. Farhadian, M. Abdolvand, F. Tirgir, The effect of novel 3R, 6R-bis (4-hydroxy benzyl) piperazine-2,5-dione (BHBPPD) derivatives on the expression of caspases in gastric cancer: A molecular docking and dynamics simulation, Arabian Journal of Chemistry 16 (2020) 105260.
  • [26] D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, GROMACS : fast, flexible, and free, Journal of Computational Chemistry 26 (2005) 1701-18.
  • [27] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, CHARMM general force field: a force field for druglike molecules compatible with the CHARMM all-atom additive biological force fields, Journal of Computational Chemistry 3 (2009) 671-690.
  • [28] S. Ekins, Y. Nikolsky, T. Nikolskaya, Techniques: application of systems biology to absorption, distribution, metabolism, excretion & tox, Trends pharmacol science 26 (2005) 202-9.
  • [29] J. L. Wang, S. Skolnik, Recent advances in physicochemical and admet profiling in drug discovery, Chemistry & Biodiversity 6 (2009) 1887-1899.
  • [30] H. Van de Waterbeemd, E. Gifford, ADMET in silico modelling: Towards prediction paradise? Nature Reviews Drug Discovery 2 (2003) 192-204.
  • [31] D. Antoine, M. Olivier, Z. Vincent, SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules, Scientific Reports 7 (2017) 42717.
  • [32] S. Salentin, V. J. Haupt, S. Daminelli, M. Schroeder, Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment, Progress in Biophysics and Molecular Biology 116 (2014) 174-186.
  • [33] R. C. Wade, P. J. Goodford, The role of hydrogen bonds in drug binding, Progress in clinical and biological research 289 (1989) 433-444.
  • [34] W. F. Mao, M. H. Shao, P. T. Gao, J. Ma, H. J. Li, G. L. Li, B. H. Han, C. G. Yuan, The important roles of RET, VEGFR2 and the RAF/MEK/ERK pathway in cancer treatment with sorafenib, Acta Pharmacologica Sinica 33 (2012) 1311-1318.
  • [35] G. Tortora, D. Melisi, F. Ciardiello, Angiogenesis: a target for cancer therapy, Current Pharmaceutical Design 10 (2004) 11-26.
  • [36] A. Hoeben, B. Landuyt, M. S. Highley, H. Wildiers, A. T. Van Oosterom, E. A. De Bruijn, Vascular endothelial growth factor and angiogenesis, Pharmacological Reviews 56 (2004) 549-580.
  • [37] N. Ferrara, H. P. Gerber, J. Le Couter, The biology of VEGF and its receptors, Nature Medicine 9 (2003) 669-676.

The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction

Year 2024, Volume: 8 Issue: 4, 48 - 61, 02.12.2024
https://doi.org/10.33435/tcandtc.1437517

Abstract

The discovery of the importance of angiogenesis in the mechanisms of tumor growth has empowered the improvement of new particles that are utilized in the therapy of various cancers. The goal of this research was to identify novel compounds functioning as potent VEGFR2 inhibitors in silico. It is an interesting therapeutic target for developing new anti-angiogenic drugs. In this work, molecular simulation studies of enzyme inhibition was carried out by structure-based virtual screening with FlexX program of VEGFR2. This approach makes it possible to model the interactions between a protein and thousands of small chemical compounds. A collection of 6,000 compounds originating from the ZINC chemical library, were tested against the active site of VEGFR2. The ADME-Tox characteristics and molecular dynamics simulation of the potential compounds were also examined. At the end of this screening, the compounds ZINC01534124 and ZINC00588595 appear as new inhibitors theoretically more active towards VEGFR2. Again, these inhibitors have shown significant binding energy by interacting with important residues in the active site. Furthermore, the in silico prediction of a similar drug positively informs us about the ADME-Tox properties of these new compounds. Finally, the stable binding of VEGFR2 with ZINC01534124 and ZINC00588595 is shown using 100 ns molecular dynamics simulations. These findings point to the chemicals ZINC01534124 and ZINC00588595 as potential candidates for VEGFR2 inhibitor research. They might also act as a starting point for further chemical modifications in order to produce therapeutically relevant anti-angiogenic medications.

References

  • [1] H. Nagai, Y.H. Kim, Cancer prevention from the perspective of global cancer burden patterns, Journal of Thoracic Disease 9 (2017) 448-451.
  • [2] R.I. Teleanu, C. Chircov, A.M. Grumezescu, D.M. Teleanu, Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment, Journal of Clinical Medicine 9 (2000) 84.
  • [3] P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases, Nature. 407 (2000) 249-257.
  • [4] S. Jiang, R. Fu, J. Shi, H. Wu, J. Mai, X. Hua, H. Chen, J. Liu, M. Lu and N. Li, CircRNA-Mediated Regulation of Angiogenesis: A New Chapter in Cancer Biology, Frontiers in Oncology 11 (2021) 553706.
  • [5] S. P. Ivy, J.Y. Wick, B.M. Kaufman, An overview of small-molecule inhibitors of VEGFR signaling, Nature Reviews Clinical Oncology 6 (2009) 569-579.
  • [6] Y. Tanrikulu, B. Krüger, E. Proschak, The holistic integration of virtual screening in drug discovery, Drug Discovery Today 18 (2013) 358-364.
  • [7] C. Wiesmann, G. Fuh, H. W. Christinger, C. Eigenbrot, J. A. Wells, A. M. De Vos, Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor, Cellule 9 (1997) 695-704.
  • [8] M. Shibuya, Vascular endothelial growth factor (VEGF)-receptor 2: its biological functions, major signaling pathway, and specific ligand VEGF-E, Endothelium 13 (2006) 63-69.
  • [9] D. Kang, X. Pang, W. Lian, L. Xu, J. Wang, H. Jia, B. Zhang, A. Liu, G. Du, Discovery of VEGFR2 inhibitors by integrating naïve Bayesian classification, molecular docking and drug screening approaches, RSC Advances 8 (2018) 5286-5297.
  • [10] S. Saraswati, P. K. Kanaujia, S. Kumar, R. Kumar, A. A. Alhaider, Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2–mediated angiogenesis, Molecular Cancer 12 (2013) 1-16.
  • [11] T. T. Kamba, D. M. McDonald, Mechanisms of adverse effects of anti-VEGF therapy for cancer, British Journal of Cancer 96 (2007) 1788-1795.
  • [12] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, R. G. Coleman, ZINC: A Free Tool to Discover Chemistry for Biology, Journal of Chemical Information and Modeling 52 (2012) 1757-1768.
  • [13] W. P. Walters, M. T. Stahl, M. A. Murcko, A virtual screening: an overview, Drug Discovery Today 3 (1998) 160-178.
  • [14] T. Hou, X. Xu, Recent Development and Application of Virtual Screening in Drug Discovery: An Overview, Current Pharmaceutical Design 10 (2004) 1011-1033.
  • [15] I. Muegge, S. Oloff, Advances in virtual screening, Drug Discovery Today : Technologies 3 (2006) 405-411.
  • [16] S. Kar, K. Roy, How far can virtual screening take us in drug discovery? Expert Opinion on Drug Discovery 8 (2013) 245-261.
  • [17] B. Kramer, M. Rarey, T. Lengauer, Evaluation of the FlexX Incremental Construction Algorithm for Protein–Ligand Docking, Proteins: Structure, Function, and Genetics 37 (1999) 228-241.
  • [18] H.J. Böhm, The computer program LUDI: a new method for de novo design of enzyme inhibitors, Journal of Computer-aided Molecular Design 6 (1992) 61-78.
  • [19] M. Rarey, B. Kramer, T. Lengauer, G. Klebe, A Fast Flexible Docking Method Using an Incremental Construction Algorithm, Journal of Molecular Biology 261 (1996) 470-489.
  • [20] L. G. Ferreira, R. N. Dos Santos, G. Oliva, A. D. Andricopulo, Molecular docking and structure-based drug design strategies, Molecules 20 (2015) 13384-13421.
  • [21] M. Rarey, B. Kramer, T. Lengauer, Multiple automatic base selection: protein-ligand docking based on incremental construction without manual intervention, Journal of Computer-Aided Molecular Design 11 (1997) 369-384.
  • [22] Y. Oguro, N. Miyamoto, K. Okada, T. Takagi, H. Iwata, Y. Awazu, H. Miki, A. Hori, K. Kamiyama, S. Imamura, Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5H-pyrrolo [3, 2-d]pyrimidine derivatives: Novel VEGFR2 kinase inhibitors binding to inactive kinase conformation, Bioorganic & Medicinal Chemistry 18 (2010) 7260-73.
  • [23] J. J. Irwin, B. K. Shoichet, ZINC − A Free Database of Commercially Available Compounds for Virtual Screening, Journal of Chemical Information and Modeling 45 (2005) 177-182.
  • [24] R. W. Spencer, Diversity Analysis in high throughput screening, Journal of Biomolecular Screening 2 (1997) 69-70.
  • [25] F. Rohani, S. H. K. Hosseini, D. Hosseini, S. Bahaloo, S. Ghiabi, E. H. Soureshjani, S. Farhadian, M. Abdolvand, F. Tirgir, The effect of novel 3R, 6R-bis (4-hydroxy benzyl) piperazine-2,5-dione (BHBPPD) derivatives on the expression of caspases in gastric cancer: A molecular docking and dynamics simulation, Arabian Journal of Chemistry 16 (2020) 105260.
  • [26] D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, GROMACS : fast, flexible, and free, Journal of Computational Chemistry 26 (2005) 1701-18.
  • [27] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, CHARMM general force field: a force field for druglike molecules compatible with the CHARMM all-atom additive biological force fields, Journal of Computational Chemistry 3 (2009) 671-690.
  • [28] S. Ekins, Y. Nikolsky, T. Nikolskaya, Techniques: application of systems biology to absorption, distribution, metabolism, excretion & tox, Trends pharmacol science 26 (2005) 202-9.
  • [29] J. L. Wang, S. Skolnik, Recent advances in physicochemical and admet profiling in drug discovery, Chemistry & Biodiversity 6 (2009) 1887-1899.
  • [30] H. Van de Waterbeemd, E. Gifford, ADMET in silico modelling: Towards prediction paradise? Nature Reviews Drug Discovery 2 (2003) 192-204.
  • [31] D. Antoine, M. Olivier, Z. Vincent, SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules, Scientific Reports 7 (2017) 42717.
  • [32] S. Salentin, V. J. Haupt, S. Daminelli, M. Schroeder, Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment, Progress in Biophysics and Molecular Biology 116 (2014) 174-186.
  • [33] R. C. Wade, P. J. Goodford, The role of hydrogen bonds in drug binding, Progress in clinical and biological research 289 (1989) 433-444.
  • [34] W. F. Mao, M. H. Shao, P. T. Gao, J. Ma, H. J. Li, G. L. Li, B. H. Han, C. G. Yuan, The important roles of RET, VEGFR2 and the RAF/MEK/ERK pathway in cancer treatment with sorafenib, Acta Pharmacologica Sinica 33 (2012) 1311-1318.
  • [35] G. Tortora, D. Melisi, F. Ciardiello, Angiogenesis: a target for cancer therapy, Current Pharmaceutical Design 10 (2004) 11-26.
  • [36] A. Hoeben, B. Landuyt, M. S. Highley, H. Wildiers, A. T. Van Oosterom, E. A. De Bruijn, Vascular endothelial growth factor and angiogenesis, Pharmacological Reviews 56 (2004) 549-580.
  • [37] N. Ferrara, H. P. Gerber, J. Le Couter, The biology of VEGF and its receptors, Nature Medicine 9 (2003) 669-676.
There are 37 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Article
Authors

Hanane Boucherıt 0000-0002-8042-8909

Amina Merzoug 0000-0003-2280-757X

Ilham Boulhıssa 0000-0001-6851-5834

Asma Mosbah 0000-0002-7809-9464

Abderrahmane Benseguenı 0000-0003-3467-6749

Early Pub Date June 7, 2024
Publication Date December 2, 2024
Submission Date February 16, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

APA Boucherıt, H., Merzoug, A., Boulhıssa, I., Mosbah, A., et al. (2024). The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction. Turkish Computational and Theoretical Chemistry, 8(4), 48-61. https://doi.org/10.33435/tcandtc.1437517
AMA Boucherıt H, Merzoug A, Boulhıssa I, Mosbah A, Benseguenı A. The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction. Turkish Comp Theo Chem (TC&TC). December 2024;8(4):48-61. doi:10.33435/tcandtc.1437517
Chicago Boucherıt, Hanane, Amina Merzoug, Ilham Boulhıssa, Asma Mosbah, and Abderrahmane Benseguenı. “The Discovery of New Potent VEGFR2 Inhibitors for Potential Anti-Angiogenesis Agent through a Combination of Structure-Based Virtual Screening, Molecular Dynamics Simulation and ADME-Tox Prediction”. Turkish Computational and Theoretical Chemistry 8, no. 4 (December 2024): 48-61. https://doi.org/10.33435/tcandtc.1437517.
EndNote Boucherıt H, Merzoug A, Boulhıssa I, Mosbah A, Benseguenı A (December 1, 2024) The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction. Turkish Computational and Theoretical Chemistry 8 4 48–61.
IEEE H. Boucherıt, A. Merzoug, I. Boulhıssa, A. Mosbah, and A. Benseguenı, “The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 4, pp. 48–61, 2024, doi: 10.33435/tcandtc.1437517.
ISNAD Boucherıt, Hanane et al. “The Discovery of New Potent VEGFR2 Inhibitors for Potential Anti-Angiogenesis Agent through a Combination of Structure-Based Virtual Screening, Molecular Dynamics Simulation and ADME-Tox Prediction”. Turkish Computational and Theoretical Chemistry 8/4 (December 2024), 48-61. https://doi.org/10.33435/tcandtc.1437517.
JAMA Boucherıt H, Merzoug A, Boulhıssa I, Mosbah A, Benseguenı A. The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction. Turkish Comp Theo Chem (TC&TC). 2024;8:48–61.
MLA Boucherıt, Hanane et al. “The Discovery of New Potent VEGFR2 Inhibitors for Potential Anti-Angiogenesis Agent through a Combination of Structure-Based Virtual Screening, Molecular Dynamics Simulation and ADME-Tox Prediction”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 4, 2024, pp. 48-61, doi:10.33435/tcandtc.1437517.
Vancouver Boucherıt H, Merzoug A, Boulhıssa I, Mosbah A, Benseguenı A. The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction. Turkish Comp Theo Chem (TC&TC). 2024;8(4):48-61.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)