Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 90 - 114, 05.01.2025
https://doi.org/10.33435/tcandtc.1493008

Abstract

References

  • [1] J. N. Delgado, W. A. Remers, In Textbook of Organic Chemistry Medicinal and Pharmaceutical Chemistry, tenth ed., Wilson and Gisvold, Lippincott Raven, Philadelphia, 1998, 390–348.
  • [2] M. Alijanianzadeh, A. A. Saboury, M. R. Ganjali, H. Hadi-Alijanvand, A. A. Moosavi-Movahedi, Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations, Journal of Biomolecular Structure and Dynamics 30(4) (2012) 448–459.
  • [3] M. Kumar Meena, D. Kumar, A. Jayaraj, A. Kumar, K. Kumari, L. M. Katata-Seru, I. Bahadur, V. Kumar, A. Sherawat, P. Singh, Designed thiazolidines: an arsenal for the inhibition of nsP3 of CHIKV using molecular docking and MD simulations, Journal of Biomolecular Structure and Dynamics 40(4) (2022) 1607–1616.
  • [4] S. Alturk, N. Boukabcha, N. Benhalima, O. Tamer, A. Chouaih, D. Avcı, Y. Atalay, F. Hamzaoui, Conformational, spectroscopic and nonlinear optical investigations on 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one: a DFT study, Indian J. Phys. 91 (2017) 501–511.
  • [5] S.H. Masraqui, R.S. Kenny, S.G. Ghadigaonkar, A. Krishnan, M. Bhat-tacharya, Synthesis and nonlinear optical properties of some donor-acceptor oxadiazoles, Das. PK Opt. Mater. 27 (2004) 257–260.
  • [6] N. Benhalima, N. Boukabcha, O. Tamer, A. Chouaih, D. Avci, Y. Atalay, F. Hamzaoui, Solvent effects on molecular structure, vibrational frequencies; and NLO properties of N-(2,3-Dichlorophenyl)-2-Nitrobenzene Sulfonamide: a density functional theory study, Braz. J. Phys. 46 (2016) 371–383.
  • [7] O. Kourat, A. Djafri, N. Benhalima, Y. Megrouss, N. E. H. Belkafouf, R. Rahmani, J.-C. Daran, A. Djafri, and A. Chouaih, Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Spectral Characterization, Reduced Density Gradient and Nonlinear Optical Investigation on (E)-N’-(4-Nitrobenzylidene)-2-(Quinolin-8-Yloxy) Acetohydrazide Monohydrate: A Combined Experimental and DFT Approach, J. Mol. Struct. 1222 (2020) 128952.
  • [8] H. Tanak, M. Yavuz, Molecular structure, spectroscopic (FT-IR and UV-Vis) and DFT quantum-chemical studies on 2-[(2,4-Dimethyl phenyl) iminomethyl] -6-methyl phenol, J. Mol. Struct. 961 (2010) 9–16.
  • [9] M.M. Ghorab, M.S. Al-Said, Synthesis and antitumor activity of some novel hydrazide,1,2-dihydropyridine, chromene and benzochromene derivatives, J. Heterocycl. Chem. 49 (2012) 272–280.
  • [10] B.F. Abdel-Wahab, R.E. Khidre, A.A. Farahat, A.S. El-Ahl, 2-Chloroquinoline-3- aldehyde: synthesis, reactions and applications, Arkivoc 1 (2012) 211–276.
  • [11] F.M.A. El-Taweel, Novel and Facile Synthesis of Thiophene,2H-Pyran-2-One, Benzimidazo[1,2-A]pyridine and Pyridine Derivatives, Phosphorus, Sulfur and Silicon 179 (2011) 1276–1277.
  • [12] E. Abd El-Rady, I.H. El-Azab, Reactivity of b-enaminoester of benzo[f] chromene: one pot synthesis of isolated heterocycle-fused derivatives of benzo[f] chromene, Eur. J. Chem. 3 (2012) 81–86.
  • [13] J. Tois, M. Vahermo, A. Koskinen, Novel and convenient synthesis of 4(1H) quinolones, Tetrahedron Lett. 46 (2005) 735–737.
  • [14] M.M. Abdelkhalik, A.M. Eltoukhy, S.M. Agamey, M.H. Elnagdi, Enaminones as building blocks in heterocyclic synthesis of nicotinic acid: new synthesis of nicotinic acid and thienopyridine derivatives, J. Heterocycl. Chem. 41 (2004) 431–435.
  • [15] S. Eswaran, A.V. Adhikari, I.H. Chowdhury, N.K. Pal, K.D. Thomas, New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties, Eur. J. Med. Chem. 45 (2010) 3374–3383.
  • [16] M.C. Mandewale, B. Thorat, Y. Nivid, R. Jadhav, A. Nagarsekar, R. Yamgar, Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II) complexes, J. Saudi Chem. Soc. 22 (2018) 218–228.
  • [17] A. Ahmed, M. Faisal, In-silico molecular docking, ADME study, and molecular dynamic simulation of new azetidin-2-one derivatives with antiproliferative activity, Turkish Comp Theo Chem (TC&TC) 9(1) (2024) 29–40.
  • [18] C. Alkaya Yildiz, S. Erkan, Investigation of Anticancer Properties of 2-benzylidene-1-indanone and Its Derivatives by DFT and Molecular Docking, Turkish Comp Theo Chem (TC&TC) 8(2) (2024) 101–109.
  • [19] J. S. Hannaa, M. M. Jwaidb, K. M. Alawad, In silico screening, molecular dynamic simulation, and pharmacokinetic studies of new Schiff base derivatives from 2-(3-benzoylphenyl) propionic acid as tyrosyl-tRNA synthetase inhibitor, Turkish Comp Theo Chem (TC&TC) 9(1) (2025) 19–28.
  • [20] Y. Mohammed, A. Al-Hamashi, Identification of Selisistat Derivatives as SIRT1-3 Inhibitors by in Silico Virtual Screening, Turkish Comp Theo Chem (TC&TC) 8(2) (2024) 1–11.
  • [21] M. Sechi, G. Rizzi, A. Bacchi, M. Carcelli, D. Rogolino, N. Pala, N. Neamati, Design and synthesis of novel dihydroquinoline-3-carboxylic acids as HIV-1 integrase inhibitors, Bioorganic & Medicinal Chemistry 17(7) (2009) 2925-2935.
  • [22] R. Konakanchi, K. P. Rao, G. N. Reddy, J. Prashanth, Zinc (II) complex: Spectroscopic physicochemical calculations anti-inflammatory and in silico molecular docking studies, J. Mol. Struct. 1263 (2022) 133070.
  • [23] S. Konduri, V. Pogaku, J. Prashanth, V. Siva Krishna, D. Sriram, S. Basavoju, K. Prabhakara Rao, Sacubitril‐Based Urea and Thiourea Derivatives as Novel Inhibitors for Anti‐Tubercular against Dormant Tuberculosis, Chemistry Select 6(16) (2021) 3869–3874.
  • [24] Y. Zhang, P .Li, X .Fan, L .Jin. Crystal structure of (Z)-2-hy-droxy-N'-(4-oxo-1,3-thia-zolidin-2-yl-idene) benzohydrazide, Acta Cryst. E 70 (2014) o1167.
  • [25] I. Petrone, P.S. Bernardo, Santos, E.C. Dos, E. Abdelhay, MTHFR C677T and A1298C polymorphisms in breast cancer, gliomas and gastric cancer: a review, Genes 12 (2021) 587.
  • [26] A.R. Velasquez, K.C. Gervacio, D.B. Ramos, E.J. Lugtu, T. Sy-Ortin, P.M. Albano, M.C. Ramos, Methylene tetrahydro folatereductase (MTHFR) 677C>T polymorphisms in breast cancer: A Filipino preliminary case-control study, Gene Reports 29 (2022) 101682.
  • [27] C. Al Hageh, E. Alefishat, M. Ghassibe-Sabbagh, D.E. Platt, H. Hamdan, R. Tcheroyan, E. Chammas, S. O'Sullivan, A. Abchee, B. Wang, X. Xu, M. Nader, P. Zalloua, Homocysteine levels, H-Hypertension and the MTHFR C677T genotypes: A complex interaction, Heliyon 9 (2023) e16444.
  • [28] H.M. Almutairi, N.S. Al-Numair, N.R. Parine, B.O. Almutairi, A.F. Alrefaei, M. Rouabhia, A. Semlali, The protective effects of the methylene tetrahydro folate reductasers 1801131 variant among Saudi smokers, Saudi Journal of Biological Sciences 28(7) (2021) 3972–3980.
  • [29] J.M. Green, D.P. Ballou, R.G. Matthews, Examination of the role of methylene tetrahydro folate reductase in incorporation of methyltetrahydrofolate into cellular metabolism, The FASEB Journal 2(1) (1988) 42–47.
  • [30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009.
  • [31] E. Frisch, H.P. Hratchian, R.D. Dennington, T.A. Keith, John Millam, B. Nielsen, A.J. Holder, J. Hiscocks, Gaussian, Syntheses, Structural Elucidation, Thermal Properties, Theoretical Quantum Chemical Studies (DFT) and Biological Studies of BarbituriceHydrazone Complexes Inc. GaussView version 5.0.8, 2009.
  • [32] S. Bibi, M. Khan, S. ur-Rehman, M. Yaseen, S. Muhammad, R. Nadeem, N. Jahan, S. Noreen, Misbah, Investigation analysis of optoelectronic and structural properties of cis- and trans-structures of azo dyes: density functional theory study, J. Phys. Org. Chem. 34 (2021) e4183.
  • [33] S. Yahiaoui, A. Moliterni, N. Corriero, C. Cuocci, K. Toubal, A. Chouaih, A. Djafri, F. Hamzaoui, 2-thioxo- 3N-(2-methoxy phenyl) -5 [4’-methyl -3’N -(2’-methoxy phenyl) thiazol-2’(3’H)-ylidene] thiazolidin -4-one: synthesis,characterization, X-ray single crystal structure investigation and quantumchemical calculations, J. Mol. Struct. 1177 (2019) 186–192.
  • [34] S. Demir, A.O. Sarioğlu, S. Güler, N. Dege, M. Sönmez, Synthesis, crystal structureanalysis, spectral IR, NMR UV-Vis investigations, NBO and NLO of 2-benzoyl-N-(4-chlorophenyl)-3-oxo-3-phenylpropan amide with use of X-ray diffraction studies along with DFT calculations, J. Mol. Struct. 1118 (2016) 316–324.
  • [35] M. Azayez, S. Chetioui, Y. Megrouss, N. Boukabcha, A. Djedouani, A. R. Guerroudj, N. Meddah Araibi, A. Chouaih, Experimental and theoretical spectroscopic characterization, Hirshfield surface analysis, TD-DFT calculation, and nonlinear optical properties of (E)-1-[(2,4,6tribromophenyl) diazenyl]-naphthalen-2-ol azo dye, J. Mol. Struct. 1261 (2022) 132887.
  • [36] Ž.B. Milanovic´, Z.S. Markovic´, D.S. Dimic´, O.R. Klisuric´, I.D. Radojevic´, D.S. Šeklic´, M.N. Živanovic´, J.D. Markovic´, M. Radulovic´, E.H. Avdovic´, Synthesis, structural characterization, biological activity and molecular docking study of 4,7-dihydroxycoumarin modified by aminophenol derivatives, Comptes Rendus. Chim. 24 (2021) 215–232.
  • [37] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592.
  • [38] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics, Journal of Molecular Graphics 14(1) (1996) 33–8.
  • [39] R. Rahmani, N. Boukabcha, A. Chouaih, F. Hamzaoui, S. Goumri-Said, On the molecular structure, vibrational spectra, HOMO-LUMO, molecular electrostatic potential, UV–Vis, first order hyperpolarizability, and thermodynamic investigations of 3-(4-chlorophenyl)-1-(1yridine-3-yl) prop-2-en-1-one by quantum chemistry calculation. J. Mol. Struct. 1155 (2018) 484–495.
  • [40] O. Trott, A.J. Olson, AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31(2) (2009) 455–461.
  • [41] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791.
  • [42] Dassault Systèmes BIOVIA, Materials Studio, 7.0, Dassault Systèmes, San Diego, 2017.
  • [43] W.L. Delano, ThePyMOL molecular graphics development component, Version 1.8, Schrodinger, LLC, New York, 2015.
  • [44] C.A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technologies 1 (2004) 337–341.
  • [45] A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717.
  • [46] H. Bekker, H.J.C. Berendsen, E.J. Dijkstra, S. Achterop, R. van Drunen, D. van der Spoel, A. Sijbers, H. Keegstra, M.K.R. Renardus, Gromacs: A parallel computer for molecular dynamics simulations. In RA. DeGroot, J. Nadrchal (Eds.), World Scientific Publishing, Physics Computing 92 (1993) 252–256.
  • [47] S.M. Bakalova, A.G. Santos, I. Timcheva, J. Kaneti, I.L. Filipova, G.M. Dobrikov, V.D. Dimitrov, J. Mol. Struct. 710 (2004) 229–234.
  • [48] H. Marshan Robert, D. Usha, M. Amalanathan, R. Racil Jeya Geetha, M. Sony Michael Mary, Vibrational spectral, density functional theory and molecular docking analysis on 4-nitrobenzohydrazide. J. Mol. Struct. 1223 (2020) 128948.
  • [49] Q. Gao, G.A. Jeffrey, J.R. Ruble, R.K. McMullan, A single-crystal neutron diffraction refinement of benzamide at 15 and 123 K, Acta Cryst. B47 (1991) 742–745.
  • [50] F.Z. Boudjenane, F. Triki-Baara, N. Boukabcha, N. E. H. Belkafouf, N. Dege, M. Saidj, N. Khelloul, A. Djafri, A. Chouaih, Synthesis, crystallographic and spectroscopic investigation, chemical reactivity, hyperpolarizabilities and in silico molecular docking study of (Z)-2N-(tertbutylimino)-3N’-(4-methoxyphenyl) thiazolidin-4-one, J. Mol. Struct. 1287 (2023) 135620.
  • [51] E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials, Advances in Quantum Chemistry 11 (1979) 115–193.
  • [52] F.J. Luque, J.M. Lopez, M. Orozco, Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Theoretical Chemistry Accounts 103(3–4) (2000) 343–345.
  • [53] V.A. Adole, B.S. Jagdale, T.B. Pawar, A.B. Sawant, Experimental and theoretical exploration on single crystal, structural, and quantum chemical parameters of (E) -7-(arylidene)-1,2,6, 7-tetrahydro-8 H-indeno[5,4- b] furan-8-one derivatives: A comparative study, Journal of the Chinese Chemical Society 67(10) (2020) 1763–1777.
  • [54] C.-G. Zhan, J. Nichols, D. Dixon, Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies, The Journal of Physical Chemistry A 107(20) (2003) 4184–4195.
  • [55] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society 105(26) (1983) 7512–7516.
  • [56] P.K. Chattaraj, S. Giri, S. Duley Update 2 of: Electrophilicity index. Chem. Rev. 111 (2011) PR43–PR75.
  • [57] R.G. Pearson, Chemical hardness and density functional theory. J. Chem. Sci. 117 (2005) 369–377.
  • [58] P. Sjoberg, P. Politzer, Use of the Electrostatic Potential at the Molecular Surface to Interpret and Predict Nucleophilic Processes, The Journal of Physical Chemistry 94(10) (1990) 3959–3961.
  • [59] E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, Revealing noncovalent interactions, Journal of the American Chemical Society, 132 (2010) 6498–6506.
  • [60] O. Noureddine, N. Issaoui, M. Medimagh, O. Al-Dossary, H. Marouani, Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: Molecular docking and DFT calculations, Journal of King Saud University – Science 33 (2021) 101334.
  • [61] R. Rajkumar, A. Kamaraj, S. Bharanidharan, H. Saleem, K. Krishnasamy, Synthesis, spectral characterization, single crystal X-ray diffraction and DFT studies of 4-((2,4,5-triphenyl -1H-imidazole-1- yl) methyl) pyridine derivatives, J. Mol. Struct. 1084 (2015) 74-81.
  • [62] H. Moghanian, A. Mobinikhaledi, R. Monjezi, Synthesis, spectroscopy (vibrational, NMR and UV-vis) studies, HOMO-LUMO and NBO analysis of 8- formyl-7-hydroxy-4-methylcoumarin by ab initio calculations, J. Mol. Struct. 1052 (2013) 135-145.
  • [63] C. Adant, M. Dupuis, J. L. Bredas, Ab initio study of the nonlinear optical properties of urea: Electron correlation and dispersion effects. Int. J. Quantum Chem. 56 (1995) 497–507.
  • [64] L.T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R. Marder, Experimental investigations of organic molecular nonlinear optical polarizabilities.1. Methods and results on benzene and stilbene derivatives, J. Phys. Chem. 95 (1991) 10631-10643.
  • [65] P. Kaatz, E.A. Donley, D.P. Shelton, A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements, J. Chem. Phys. 108 (1998) 849–856.
  • [66] Y. Liu, Y. Yuan, X. Tian, J. Yuan, J. Sun. High first-hyperpolarizabilities of thiobarbituric acid derivative-based donor π-acceptor nonlinear optical-phores: Multiple theoretical investigations of substituents and conjugated bridges effect, Int. J. Quantum Chem. 120(10) (2020) e26176.
  • [67] M. Nadimi, T. Waritanant, A. Major, High power and beam quality continuous-wave Nd:GdVO4 laser in-band diode-pumped at 912 nm, Photonics Res. 5 (2017) 346–349.
  • [68] G. Gong, X. Gao, J. Wang, D. Zhao, H.S. Freeman, Trisazo Direct Black Dyes Based on Nonmutagenic 3, 3′-Disubstituted Benzidines, Dyes and Pigments 53(2) (2002) 109–117.
  • [69] Y.I. El-Gazzar, H.H. Georgey, S.M. El-Messery, H.A. Ewida, G.S. Hassan, M.M. Raafat, M.A. Ewida, H.I. El-Subbagh, Synthesis, Biological Evaluation and Molecular Modeling Study of New (1,2,4-Triazole or 1,3,4-Thiadiazole)-Methylthio-Derivatives of Quinazolin-4(3H)-One as DHFR Inhibitors, Bioorganic Chemistry 72 (2017) 282–292.
  • [70] Y.A. Ammar, S.M.A.A. El-Hafez, S.A. Hessein, A.M. Ali, A.A. Askar, A. Ragab, One-Pot Strategy for Thiazole Tethered 7-Ethoxy Quinoline Hybrids: Synthesis and Potential Antimicrobial Agents as Dihydrofolate Reductase (DHFR) Inhibitors with Molecular Docking Study, J. Mol. Struct. 1242 (2021) 130748.
  • [71] S.A. Ibrahim, E.A. Fayed, H.F. Rizk, S.E. Desouky, A. Ragab, Hydrazonoyl Bromide Precursors as DHFR Inhibitors for the Synthesis of Bis-Thiazolyl Pyrazole Derivatives; Antimicrobial Activities, Antibiofilm, and Drug Combination Studies against MRSA, Bioorganic Chemistry 116 (2021) 105339.
  • [72] G.S. Hassan, S.M. El-Messery, F.A.M. Al-Omary, S.T. Al-Rashood, M.I. Shabayek, Y.S. Abulfadl, E.-S.E. Habib, S.M. El-Hallouty, W. Fayad, K.M. Mohamed, Nonclassical antifolates, Part 4. 5-(2-aminothiazol-4-yl)-4-Phenyl-4H-1,2,4-triazole-3-thiols as a new class of DHFR Inhibitors: Synthesis, biological evaluation and molecular modeling study, European Journal of Medicinal Chemistry 66 (2013) 135–145.
  • [73] P. Gahtori, S.K. Ghosh, P. Parida, A. Prakash, K. Gogoi, H.R. Bhat, U.P. Singh, Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: A novel and potential antifolate lead for Pf-DHFR-TS inhibition, Experimental Parasitology 130(3) (2012) 292–299.
  • [74] H.F. Rizk, M.A. El-Borai, A. Ragab, S.A. Ibrahim, M.E. Sadek, A novel of azo-thiazole moiety alternative for benzidine-based pigments: design, synthesis, characterization, biological evaluation, and molecular docking study, Polycyclic Aromatic Compounds 43(1) (2023) 500–522.
  • [75] T.C. Eadsforth, F.V. Maluf, W.N. Hunter, Acinetobacterbaumannii FolD ligand complexes-potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571. FEBS J. 279 (2012) 4350–4360.
  • [76] V.V. Poroikov, D.A. Filimonov, W.-D. Ihlenfeldt, T.A. Gloriozova, A.A. Lagunin, Y.V. Borodina, M.C. Nicklaus. PASS Biological activity spectrum predictions in the enhanced open NCI database browser. Journal of Chemical Information and Computer Sciences 43(1) (2003) 228–236.
  • [77] A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov, PASS: prediction of activity spectra for biologically active substances, J. Bioinform. 16 (2000) 747–748.
  • [78] R.P.D. Bank, RCSB PDB: Homepage. https://www.rcsb.org/.
  • [79] M. Saidj, A. Djafri, R. Rahmani, N.E.H. Belkafouf, N. Boukabcha, A. Djafri, A. Chouaih, Molecular structure, experimental and theoretical vibrational spectroscopy, (HOMO-LUMO, NBO) investigation, (RDG, AIM) analysis, (MEP, NLO) study and molecular docking of Ethyl-2-{[4-Ethyl-5-(Quinolin-8-yloxyMethyl)-4H-1,2,4-Triazol-3-yl] Sulfanyl} acetate, Polycycl. Aromat. Compd. 43(3) (2023) 2152–2176.
  • [80] S. Fazil, M. Smitha, Y. Sheena Mary, Y. Shyma Mary, V. Chandramohan, N. Kumar, R. Pavithran, C. Van Alsenoy, Structural (SC-XRD), spectroscopic, DFT, MD investigations and molecular docking studies of a hydrazone derivative, Chemical Data Collections 30 (2020) 100588.
  • [81] S.A. Hitchcock, L.D. Pennington, Structure-brain exposure relationships, J. Med. Chem. 49(26) (2006) 7559–7583.
  • [82] T.A. Halgren, Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94, J. Comput. Chem. 17 (1996) 553–586.
  • [83] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926–935.
  • [84] H.J.C. Berendsen, J.P. Postma, W.F.V. Gunsteren, A. DiNola, J.R. Haak. Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984) 3684–3690.
  • [85] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma. The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269–6271.
  • [86] P. J. Turner. XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR 2 (2005).
  • [87] M. Sivaramakrishnan, K. Kandaswamy, S. Natesan, R.D. Devarajan, S.G. Ramakris, Kothandan R .Molecular docking and dynamics studies on plasmepsin V of malarial parasite Plasmodium vivax, Inform Med Unlocked 19 (2020) 100331.
  • [88] Y.S. Mary, Y.S. Mary, K.S. Resmi, S. Sarala, R. Yadav, I. Celik. Modeling the structural and reactivity properties of hydrazono methyl-4H-chromen-4-one derivatives-wavefunction-dependent properties, molecular docking, and dynamics simulation studies, J. Mol. Model. 27 (2021) 186.
  • [89] K.S. Jacob, S. Ganguly, P. Kumar, R. Poddar, A. Kumar, Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 a-demethylase, a target enzyme for antifungal therapy, J. Biomol. Struct. Dyn. 35 (2017) 1446–1463.
  • [90] S. Khan, F.I. Khan, T. Mohammad, P. Khan, G.M. Hasan, K.A. Lobb, A. Islam, F. Ahmad, M.I. Hassan, Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: a combined spectroscopic and molecular dynamic simulation studies, Int. J. Biol. Macromol. 111 (2018) 548–560.
  • [91] L. Martínez, Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis, PloS one 10(3) (2015) e0119264.
  • [92] B. Pandey, P. Sharma, Structural insights into impact of Y134F mutation and discovery of novel fungicidal compounds against CYP51 in Pucciniatriticina, J. Cell. Biochem. 119 (2010) 2588–2603.
  • [93] J.S. Al-Otaibi, R.A. Costa, E.V. Costa, V.L. Tananta, Y.S. Mary, Insights into solvation, chemical reactivity, structural, vibrational and anti-hypertensive properties of a thiazolopyrimidine derivative by DFT and MD simulations, Struct Chem. 33 (2022) 1271–1283.
  • [94] W. Chen, Y. Deng, E. Russell, Y. Wu, R. Abel, L. Wang, Accurate calculation of relative binding free energies between ligands with different net charges, J. Chem. Theory Comput. 14 (2018) 6346–6358.
  • [95] I. Habib, T. A. Chohan, T.A. Chohan, F. Batool, U. Khurshid, A. Khursheed, A. Raza, M. Ansari, A. Hussain, S. Anwar, N. A. Awadh Ali, H. Saleem, Integrated computational approaches for designing potent pyrimidine-based CDK9 inhibitors: 3D-QSAR, docking, and molecular dynamics simulations,, Computational Biology and Chemistry, 108, (2024) 108003.

DFT theoretical calculations on (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene) benzohydrazide as a methylene tetrahydrofolatereductase inhibitor: An in silico study, molecular docking, and molecular dynamics simulations

Year 2025, Volume: 9 Issue: 1, 90 - 114, 05.01.2025
https://doi.org/10.33435/tcandtc.1493008

Abstract

In this study, (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene)benzohydrazide (HTBH) was theoretically studied. The B3LYP/6-311G (d,p) level of calculation was used to accomplish the optimal molecular geometry, the global reactivity descriptor parameters, Fukui functions, and molecular electrostatic potential (MEP) parameters. The reduced density gradient (RDG) was used to explore the non-covalent interactions in the molecular system. Furthermore, possible nonlinear optical characteristics were explored. These properties include the electric dipole moment, mean polarizability, and first and second hyperpolarizabilities, indicating the intriguing uses of the HTBH in optical systems. The dipole moment of HTBH molecule was calculated to be 6.81 D, while the static second order hyperpolarizabilitywas found to be of 29.86×10-36esu. In addition, the MEP map provides insight into the electrostatic potential distribution within the molecule indicating that most nucleophilicand electrophilic regions are around oxygen atoms and H atom of the hydroxyl group, respectively.Using molecular docking, the inhibitory nature of HTBH against the methylene tetrahydrofolatereductase (NADPH) protein was analyzed. This enzyme involves in folate metabolism, and its inhibition can have implications for various biological processes. Finally, through a detailed molecular dynamics (MD) simulation, we unravel the compound's inhibitory potential and binding characteristics, offering valuable information for developing therapeutic interventions. The binding energies were computed as well by using the MM-PBSA.

References

  • [1] J. N. Delgado, W. A. Remers, In Textbook of Organic Chemistry Medicinal and Pharmaceutical Chemistry, tenth ed., Wilson and Gisvold, Lippincott Raven, Philadelphia, 1998, 390–348.
  • [2] M. Alijanianzadeh, A. A. Saboury, M. R. Ganjali, H. Hadi-Alijanvand, A. A. Moosavi-Movahedi, Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations, Journal of Biomolecular Structure and Dynamics 30(4) (2012) 448–459.
  • [3] M. Kumar Meena, D. Kumar, A. Jayaraj, A. Kumar, K. Kumari, L. M. Katata-Seru, I. Bahadur, V. Kumar, A. Sherawat, P. Singh, Designed thiazolidines: an arsenal for the inhibition of nsP3 of CHIKV using molecular docking and MD simulations, Journal of Biomolecular Structure and Dynamics 40(4) (2022) 1607–1616.
  • [4] S. Alturk, N. Boukabcha, N. Benhalima, O. Tamer, A. Chouaih, D. Avcı, Y. Atalay, F. Hamzaoui, Conformational, spectroscopic and nonlinear optical investigations on 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one: a DFT study, Indian J. Phys. 91 (2017) 501–511.
  • [5] S.H. Masraqui, R.S. Kenny, S.G. Ghadigaonkar, A. Krishnan, M. Bhat-tacharya, Synthesis and nonlinear optical properties of some donor-acceptor oxadiazoles, Das. PK Opt. Mater. 27 (2004) 257–260.
  • [6] N. Benhalima, N. Boukabcha, O. Tamer, A. Chouaih, D. Avci, Y. Atalay, F. Hamzaoui, Solvent effects on molecular structure, vibrational frequencies; and NLO properties of N-(2,3-Dichlorophenyl)-2-Nitrobenzene Sulfonamide: a density functional theory study, Braz. J. Phys. 46 (2016) 371–383.
  • [7] O. Kourat, A. Djafri, N. Benhalima, Y. Megrouss, N. E. H. Belkafouf, R. Rahmani, J.-C. Daran, A. Djafri, and A. Chouaih, Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Spectral Characterization, Reduced Density Gradient and Nonlinear Optical Investigation on (E)-N’-(4-Nitrobenzylidene)-2-(Quinolin-8-Yloxy) Acetohydrazide Monohydrate: A Combined Experimental and DFT Approach, J. Mol. Struct. 1222 (2020) 128952.
  • [8] H. Tanak, M. Yavuz, Molecular structure, spectroscopic (FT-IR and UV-Vis) and DFT quantum-chemical studies on 2-[(2,4-Dimethyl phenyl) iminomethyl] -6-methyl phenol, J. Mol. Struct. 961 (2010) 9–16.
  • [9] M.M. Ghorab, M.S. Al-Said, Synthesis and antitumor activity of some novel hydrazide,1,2-dihydropyridine, chromene and benzochromene derivatives, J. Heterocycl. Chem. 49 (2012) 272–280.
  • [10] B.F. Abdel-Wahab, R.E. Khidre, A.A. Farahat, A.S. El-Ahl, 2-Chloroquinoline-3- aldehyde: synthesis, reactions and applications, Arkivoc 1 (2012) 211–276.
  • [11] F.M.A. El-Taweel, Novel and Facile Synthesis of Thiophene,2H-Pyran-2-One, Benzimidazo[1,2-A]pyridine and Pyridine Derivatives, Phosphorus, Sulfur and Silicon 179 (2011) 1276–1277.
  • [12] E. Abd El-Rady, I.H. El-Azab, Reactivity of b-enaminoester of benzo[f] chromene: one pot synthesis of isolated heterocycle-fused derivatives of benzo[f] chromene, Eur. J. Chem. 3 (2012) 81–86.
  • [13] J. Tois, M. Vahermo, A. Koskinen, Novel and convenient synthesis of 4(1H) quinolones, Tetrahedron Lett. 46 (2005) 735–737.
  • [14] M.M. Abdelkhalik, A.M. Eltoukhy, S.M. Agamey, M.H. Elnagdi, Enaminones as building blocks in heterocyclic synthesis of nicotinic acid: new synthesis of nicotinic acid and thienopyridine derivatives, J. Heterocycl. Chem. 41 (2004) 431–435.
  • [15] S. Eswaran, A.V. Adhikari, I.H. Chowdhury, N.K. Pal, K.D. Thomas, New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties, Eur. J. Med. Chem. 45 (2010) 3374–3383.
  • [16] M.C. Mandewale, B. Thorat, Y. Nivid, R. Jadhav, A. Nagarsekar, R. Yamgar, Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II) complexes, J. Saudi Chem. Soc. 22 (2018) 218–228.
  • [17] A. Ahmed, M. Faisal, In-silico molecular docking, ADME study, and molecular dynamic simulation of new azetidin-2-one derivatives with antiproliferative activity, Turkish Comp Theo Chem (TC&TC) 9(1) (2024) 29–40.
  • [18] C. Alkaya Yildiz, S. Erkan, Investigation of Anticancer Properties of 2-benzylidene-1-indanone and Its Derivatives by DFT and Molecular Docking, Turkish Comp Theo Chem (TC&TC) 8(2) (2024) 101–109.
  • [19] J. S. Hannaa, M. M. Jwaidb, K. M. Alawad, In silico screening, molecular dynamic simulation, and pharmacokinetic studies of new Schiff base derivatives from 2-(3-benzoylphenyl) propionic acid as tyrosyl-tRNA synthetase inhibitor, Turkish Comp Theo Chem (TC&TC) 9(1) (2025) 19–28.
  • [20] Y. Mohammed, A. Al-Hamashi, Identification of Selisistat Derivatives as SIRT1-3 Inhibitors by in Silico Virtual Screening, Turkish Comp Theo Chem (TC&TC) 8(2) (2024) 1–11.
  • [21] M. Sechi, G. Rizzi, A. Bacchi, M. Carcelli, D. Rogolino, N. Pala, N. Neamati, Design and synthesis of novel dihydroquinoline-3-carboxylic acids as HIV-1 integrase inhibitors, Bioorganic & Medicinal Chemistry 17(7) (2009) 2925-2935.
  • [22] R. Konakanchi, K. P. Rao, G. N. Reddy, J. Prashanth, Zinc (II) complex: Spectroscopic physicochemical calculations anti-inflammatory and in silico molecular docking studies, J. Mol. Struct. 1263 (2022) 133070.
  • [23] S. Konduri, V. Pogaku, J. Prashanth, V. Siva Krishna, D. Sriram, S. Basavoju, K. Prabhakara Rao, Sacubitril‐Based Urea and Thiourea Derivatives as Novel Inhibitors for Anti‐Tubercular against Dormant Tuberculosis, Chemistry Select 6(16) (2021) 3869–3874.
  • [24] Y. Zhang, P .Li, X .Fan, L .Jin. Crystal structure of (Z)-2-hy-droxy-N'-(4-oxo-1,3-thia-zolidin-2-yl-idene) benzohydrazide, Acta Cryst. E 70 (2014) o1167.
  • [25] I. Petrone, P.S. Bernardo, Santos, E.C. Dos, E. Abdelhay, MTHFR C677T and A1298C polymorphisms in breast cancer, gliomas and gastric cancer: a review, Genes 12 (2021) 587.
  • [26] A.R. Velasquez, K.C. Gervacio, D.B. Ramos, E.J. Lugtu, T. Sy-Ortin, P.M. Albano, M.C. Ramos, Methylene tetrahydro folatereductase (MTHFR) 677C>T polymorphisms in breast cancer: A Filipino preliminary case-control study, Gene Reports 29 (2022) 101682.
  • [27] C. Al Hageh, E. Alefishat, M. Ghassibe-Sabbagh, D.E. Platt, H. Hamdan, R. Tcheroyan, E. Chammas, S. O'Sullivan, A. Abchee, B. Wang, X. Xu, M. Nader, P. Zalloua, Homocysteine levels, H-Hypertension and the MTHFR C677T genotypes: A complex interaction, Heliyon 9 (2023) e16444.
  • [28] H.M. Almutairi, N.S. Al-Numair, N.R. Parine, B.O. Almutairi, A.F. Alrefaei, M. Rouabhia, A. Semlali, The protective effects of the methylene tetrahydro folate reductasers 1801131 variant among Saudi smokers, Saudi Journal of Biological Sciences 28(7) (2021) 3972–3980.
  • [29] J.M. Green, D.P. Ballou, R.G. Matthews, Examination of the role of methylene tetrahydro folate reductase in incorporation of methyltetrahydrofolate into cellular metabolism, The FASEB Journal 2(1) (1988) 42–47.
  • [30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009.
  • [31] E. Frisch, H.P. Hratchian, R.D. Dennington, T.A. Keith, John Millam, B. Nielsen, A.J. Holder, J. Hiscocks, Gaussian, Syntheses, Structural Elucidation, Thermal Properties, Theoretical Quantum Chemical Studies (DFT) and Biological Studies of BarbituriceHydrazone Complexes Inc. GaussView version 5.0.8, 2009.
  • [32] S. Bibi, M. Khan, S. ur-Rehman, M. Yaseen, S. Muhammad, R. Nadeem, N. Jahan, S. Noreen, Misbah, Investigation analysis of optoelectronic and structural properties of cis- and trans-structures of azo dyes: density functional theory study, J. Phys. Org. Chem. 34 (2021) e4183.
  • [33] S. Yahiaoui, A. Moliterni, N. Corriero, C. Cuocci, K. Toubal, A. Chouaih, A. Djafri, F. Hamzaoui, 2-thioxo- 3N-(2-methoxy phenyl) -5 [4’-methyl -3’N -(2’-methoxy phenyl) thiazol-2’(3’H)-ylidene] thiazolidin -4-one: synthesis,characterization, X-ray single crystal structure investigation and quantumchemical calculations, J. Mol. Struct. 1177 (2019) 186–192.
  • [34] S. Demir, A.O. Sarioğlu, S. Güler, N. Dege, M. Sönmez, Synthesis, crystal structureanalysis, spectral IR, NMR UV-Vis investigations, NBO and NLO of 2-benzoyl-N-(4-chlorophenyl)-3-oxo-3-phenylpropan amide with use of X-ray diffraction studies along with DFT calculations, J. Mol. Struct. 1118 (2016) 316–324.
  • [35] M. Azayez, S. Chetioui, Y. Megrouss, N. Boukabcha, A. Djedouani, A. R. Guerroudj, N. Meddah Araibi, A. Chouaih, Experimental and theoretical spectroscopic characterization, Hirshfield surface analysis, TD-DFT calculation, and nonlinear optical properties of (E)-1-[(2,4,6tribromophenyl) diazenyl]-naphthalen-2-ol azo dye, J. Mol. Struct. 1261 (2022) 132887.
  • [36] Ž.B. Milanovic´, Z.S. Markovic´, D.S. Dimic´, O.R. Klisuric´, I.D. Radojevic´, D.S. Šeklic´, M.N. Živanovic´, J.D. Markovic´, M. Radulovic´, E.H. Avdovic´, Synthesis, structural characterization, biological activity and molecular docking study of 4,7-dihydroxycoumarin modified by aminophenol derivatives, Comptes Rendus. Chim. 24 (2021) 215–232.
  • [37] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592.
  • [38] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics, Journal of Molecular Graphics 14(1) (1996) 33–8.
  • [39] R. Rahmani, N. Boukabcha, A. Chouaih, F. Hamzaoui, S. Goumri-Said, On the molecular structure, vibrational spectra, HOMO-LUMO, molecular electrostatic potential, UV–Vis, first order hyperpolarizability, and thermodynamic investigations of 3-(4-chlorophenyl)-1-(1yridine-3-yl) prop-2-en-1-one by quantum chemistry calculation. J. Mol. Struct. 1155 (2018) 484–495.
  • [40] O. Trott, A.J. Olson, AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31(2) (2009) 455–461.
  • [41] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791.
  • [42] Dassault Systèmes BIOVIA, Materials Studio, 7.0, Dassault Systèmes, San Diego, 2017.
  • [43] W.L. Delano, ThePyMOL molecular graphics development component, Version 1.8, Schrodinger, LLC, New York, 2015.
  • [44] C.A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technologies 1 (2004) 337–341.
  • [45] A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717.
  • [46] H. Bekker, H.J.C. Berendsen, E.J. Dijkstra, S. Achterop, R. van Drunen, D. van der Spoel, A. Sijbers, H. Keegstra, M.K.R. Renardus, Gromacs: A parallel computer for molecular dynamics simulations. In RA. DeGroot, J. Nadrchal (Eds.), World Scientific Publishing, Physics Computing 92 (1993) 252–256.
  • [47] S.M. Bakalova, A.G. Santos, I. Timcheva, J. Kaneti, I.L. Filipova, G.M. Dobrikov, V.D. Dimitrov, J. Mol. Struct. 710 (2004) 229–234.
  • [48] H. Marshan Robert, D. Usha, M. Amalanathan, R. Racil Jeya Geetha, M. Sony Michael Mary, Vibrational spectral, density functional theory and molecular docking analysis on 4-nitrobenzohydrazide. J. Mol. Struct. 1223 (2020) 128948.
  • [49] Q. Gao, G.A. Jeffrey, J.R. Ruble, R.K. McMullan, A single-crystal neutron diffraction refinement of benzamide at 15 and 123 K, Acta Cryst. B47 (1991) 742–745.
  • [50] F.Z. Boudjenane, F. Triki-Baara, N. Boukabcha, N. E. H. Belkafouf, N. Dege, M. Saidj, N. Khelloul, A. Djafri, A. Chouaih, Synthesis, crystallographic and spectroscopic investigation, chemical reactivity, hyperpolarizabilities and in silico molecular docking study of (Z)-2N-(tertbutylimino)-3N’-(4-methoxyphenyl) thiazolidin-4-one, J. Mol. Struct. 1287 (2023) 135620.
  • [51] E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials, Advances in Quantum Chemistry 11 (1979) 115–193.
  • [52] F.J. Luque, J.M. Lopez, M. Orozco, Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Theoretical Chemistry Accounts 103(3–4) (2000) 343–345.
  • [53] V.A. Adole, B.S. Jagdale, T.B. Pawar, A.B. Sawant, Experimental and theoretical exploration on single crystal, structural, and quantum chemical parameters of (E) -7-(arylidene)-1,2,6, 7-tetrahydro-8 H-indeno[5,4- b] furan-8-one derivatives: A comparative study, Journal of the Chinese Chemical Society 67(10) (2020) 1763–1777.
  • [54] C.-G. Zhan, J. Nichols, D. Dixon, Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies, The Journal of Physical Chemistry A 107(20) (2003) 4184–4195.
  • [55] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society 105(26) (1983) 7512–7516.
  • [56] P.K. Chattaraj, S. Giri, S. Duley Update 2 of: Electrophilicity index. Chem. Rev. 111 (2011) PR43–PR75.
  • [57] R.G. Pearson, Chemical hardness and density functional theory. J. Chem. Sci. 117 (2005) 369–377.
  • [58] P. Sjoberg, P. Politzer, Use of the Electrostatic Potential at the Molecular Surface to Interpret and Predict Nucleophilic Processes, The Journal of Physical Chemistry 94(10) (1990) 3959–3961.
  • [59] E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, Revealing noncovalent interactions, Journal of the American Chemical Society, 132 (2010) 6498–6506.
  • [60] O. Noureddine, N. Issaoui, M. Medimagh, O. Al-Dossary, H. Marouani, Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: Molecular docking and DFT calculations, Journal of King Saud University – Science 33 (2021) 101334.
  • [61] R. Rajkumar, A. Kamaraj, S. Bharanidharan, H. Saleem, K. Krishnasamy, Synthesis, spectral characterization, single crystal X-ray diffraction and DFT studies of 4-((2,4,5-triphenyl -1H-imidazole-1- yl) methyl) pyridine derivatives, J. Mol. Struct. 1084 (2015) 74-81.
  • [62] H. Moghanian, A. Mobinikhaledi, R. Monjezi, Synthesis, spectroscopy (vibrational, NMR and UV-vis) studies, HOMO-LUMO and NBO analysis of 8- formyl-7-hydroxy-4-methylcoumarin by ab initio calculations, J. Mol. Struct. 1052 (2013) 135-145.
  • [63] C. Adant, M. Dupuis, J. L. Bredas, Ab initio study of the nonlinear optical properties of urea: Electron correlation and dispersion effects. Int. J. Quantum Chem. 56 (1995) 497–507.
  • [64] L.T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R. Marder, Experimental investigations of organic molecular nonlinear optical polarizabilities.1. Methods and results on benzene and stilbene derivatives, J. Phys. Chem. 95 (1991) 10631-10643.
  • [65] P. Kaatz, E.A. Donley, D.P. Shelton, A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements, J. Chem. Phys. 108 (1998) 849–856.
  • [66] Y. Liu, Y. Yuan, X. Tian, J. Yuan, J. Sun. High first-hyperpolarizabilities of thiobarbituric acid derivative-based donor π-acceptor nonlinear optical-phores: Multiple theoretical investigations of substituents and conjugated bridges effect, Int. J. Quantum Chem. 120(10) (2020) e26176.
  • [67] M. Nadimi, T. Waritanant, A. Major, High power and beam quality continuous-wave Nd:GdVO4 laser in-band diode-pumped at 912 nm, Photonics Res. 5 (2017) 346–349.
  • [68] G. Gong, X. Gao, J. Wang, D. Zhao, H.S. Freeman, Trisazo Direct Black Dyes Based on Nonmutagenic 3, 3′-Disubstituted Benzidines, Dyes and Pigments 53(2) (2002) 109–117.
  • [69] Y.I. El-Gazzar, H.H. Georgey, S.M. El-Messery, H.A. Ewida, G.S. Hassan, M.M. Raafat, M.A. Ewida, H.I. El-Subbagh, Synthesis, Biological Evaluation and Molecular Modeling Study of New (1,2,4-Triazole or 1,3,4-Thiadiazole)-Methylthio-Derivatives of Quinazolin-4(3H)-One as DHFR Inhibitors, Bioorganic Chemistry 72 (2017) 282–292.
  • [70] Y.A. Ammar, S.M.A.A. El-Hafez, S.A. Hessein, A.M. Ali, A.A. Askar, A. Ragab, One-Pot Strategy for Thiazole Tethered 7-Ethoxy Quinoline Hybrids: Synthesis and Potential Antimicrobial Agents as Dihydrofolate Reductase (DHFR) Inhibitors with Molecular Docking Study, J. Mol. Struct. 1242 (2021) 130748.
  • [71] S.A. Ibrahim, E.A. Fayed, H.F. Rizk, S.E. Desouky, A. Ragab, Hydrazonoyl Bromide Precursors as DHFR Inhibitors for the Synthesis of Bis-Thiazolyl Pyrazole Derivatives; Antimicrobial Activities, Antibiofilm, and Drug Combination Studies against MRSA, Bioorganic Chemistry 116 (2021) 105339.
  • [72] G.S. Hassan, S.M. El-Messery, F.A.M. Al-Omary, S.T. Al-Rashood, M.I. Shabayek, Y.S. Abulfadl, E.-S.E. Habib, S.M. El-Hallouty, W. Fayad, K.M. Mohamed, Nonclassical antifolates, Part 4. 5-(2-aminothiazol-4-yl)-4-Phenyl-4H-1,2,4-triazole-3-thiols as a new class of DHFR Inhibitors: Synthesis, biological evaluation and molecular modeling study, European Journal of Medicinal Chemistry 66 (2013) 135–145.
  • [73] P. Gahtori, S.K. Ghosh, P. Parida, A. Prakash, K. Gogoi, H.R. Bhat, U.P. Singh, Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: A novel and potential antifolate lead for Pf-DHFR-TS inhibition, Experimental Parasitology 130(3) (2012) 292–299.
  • [74] H.F. Rizk, M.A. El-Borai, A. Ragab, S.A. Ibrahim, M.E. Sadek, A novel of azo-thiazole moiety alternative for benzidine-based pigments: design, synthesis, characterization, biological evaluation, and molecular docking study, Polycyclic Aromatic Compounds 43(1) (2023) 500–522.
  • [75] T.C. Eadsforth, F.V. Maluf, W.N. Hunter, Acinetobacterbaumannii FolD ligand complexes-potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571. FEBS J. 279 (2012) 4350–4360.
  • [76] V.V. Poroikov, D.A. Filimonov, W.-D. Ihlenfeldt, T.A. Gloriozova, A.A. Lagunin, Y.V. Borodina, M.C. Nicklaus. PASS Biological activity spectrum predictions in the enhanced open NCI database browser. Journal of Chemical Information and Computer Sciences 43(1) (2003) 228–236.
  • [77] A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov, PASS: prediction of activity spectra for biologically active substances, J. Bioinform. 16 (2000) 747–748.
  • [78] R.P.D. Bank, RCSB PDB: Homepage. https://www.rcsb.org/.
  • [79] M. Saidj, A. Djafri, R. Rahmani, N.E.H. Belkafouf, N. Boukabcha, A. Djafri, A. Chouaih, Molecular structure, experimental and theoretical vibrational spectroscopy, (HOMO-LUMO, NBO) investigation, (RDG, AIM) analysis, (MEP, NLO) study and molecular docking of Ethyl-2-{[4-Ethyl-5-(Quinolin-8-yloxyMethyl)-4H-1,2,4-Triazol-3-yl] Sulfanyl} acetate, Polycycl. Aromat. Compd. 43(3) (2023) 2152–2176.
  • [80] S. Fazil, M. Smitha, Y. Sheena Mary, Y. Shyma Mary, V. Chandramohan, N. Kumar, R. Pavithran, C. Van Alsenoy, Structural (SC-XRD), spectroscopic, DFT, MD investigations and molecular docking studies of a hydrazone derivative, Chemical Data Collections 30 (2020) 100588.
  • [81] S.A. Hitchcock, L.D. Pennington, Structure-brain exposure relationships, J. Med. Chem. 49(26) (2006) 7559–7583.
  • [82] T.A. Halgren, Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94, J. Comput. Chem. 17 (1996) 553–586.
  • [83] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926–935.
  • [84] H.J.C. Berendsen, J.P. Postma, W.F.V. Gunsteren, A. DiNola, J.R. Haak. Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984) 3684–3690.
  • [85] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma. The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269–6271.
  • [86] P. J. Turner. XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR 2 (2005).
  • [87] M. Sivaramakrishnan, K. Kandaswamy, S. Natesan, R.D. Devarajan, S.G. Ramakris, Kothandan R .Molecular docking and dynamics studies on plasmepsin V of malarial parasite Plasmodium vivax, Inform Med Unlocked 19 (2020) 100331.
  • [88] Y.S. Mary, Y.S. Mary, K.S. Resmi, S. Sarala, R. Yadav, I. Celik. Modeling the structural and reactivity properties of hydrazono methyl-4H-chromen-4-one derivatives-wavefunction-dependent properties, molecular docking, and dynamics simulation studies, J. Mol. Model. 27 (2021) 186.
  • [89] K.S. Jacob, S. Ganguly, P. Kumar, R. Poddar, A. Kumar, Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 a-demethylase, a target enzyme for antifungal therapy, J. Biomol. Struct. Dyn. 35 (2017) 1446–1463.
  • [90] S. Khan, F.I. Khan, T. Mohammad, P. Khan, G.M. Hasan, K.A. Lobb, A. Islam, F. Ahmad, M.I. Hassan, Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: a combined spectroscopic and molecular dynamic simulation studies, Int. J. Biol. Macromol. 111 (2018) 548–560.
  • [91] L. Martínez, Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis, PloS one 10(3) (2015) e0119264.
  • [92] B. Pandey, P. Sharma, Structural insights into impact of Y134F mutation and discovery of novel fungicidal compounds against CYP51 in Pucciniatriticina, J. Cell. Biochem. 119 (2010) 2588–2603.
  • [93] J.S. Al-Otaibi, R.A. Costa, E.V. Costa, V.L. Tananta, Y.S. Mary, Insights into solvation, chemical reactivity, structural, vibrational and anti-hypertensive properties of a thiazolopyrimidine derivative by DFT and MD simulations, Struct Chem. 33 (2022) 1271–1283.
  • [94] W. Chen, Y. Deng, E. Russell, Y. Wu, R. Abel, L. Wang, Accurate calculation of relative binding free energies between ligands with different net charges, J. Chem. Theory Comput. 14 (2018) 6346–6358.
  • [95] I. Habib, T. A. Chohan, T.A. Chohan, F. Batool, U. Khurshid, A. Khursheed, A. Raza, M. Ansari, A. Hussain, S. Anwar, N. A. Awadh Ali, H. Saleem, Integrated computational approaches for designing potent pyrimidine-based CDK9 inhibitors: 3D-QSAR, docking, and molecular dynamics simulations,, Computational Biology and Chemistry, 108, (2024) 108003.
There are 95 citations in total.

Details

Primary Language English
Subjects Reaction Kinetics and Dynamics
Journal Section Research Article
Authors

Fatima Boudjenane 0000-0003-4242-8622

Rachida Rahmani 0000-0002-0335-8783

Youcef Megrouss 0000-0002-3823-6911

Abdelkader Chouaih 0000-0002-3769-358X

Nadia Benhalima 0000-0003-1690-7785

Early Pub Date August 25, 2024
Publication Date January 5, 2025
Submission Date June 1, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Boudjenane, F., Rahmani, R., Megrouss, Y., Chouaih, A., et al. (2025). DFT theoretical calculations on (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene) benzohydrazide as a methylene tetrahydrofolatereductase inhibitor: An in silico study, molecular docking, and molecular dynamics simulations. Turkish Computational and Theoretical Chemistry, 9(1), 90-114. https://doi.org/10.33435/tcandtc.1493008
AMA Boudjenane F, Rahmani R, Megrouss Y, Chouaih A, Benhalima N. DFT theoretical calculations on (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene) benzohydrazide as a methylene tetrahydrofolatereductase inhibitor: An in silico study, molecular docking, and molecular dynamics simulations. Turkish Comp Theo Chem (TC&TC). January 2025;9(1):90-114. doi:10.33435/tcandtc.1493008
Chicago Boudjenane, Fatima, Rachida Rahmani, Youcef Megrouss, Abdelkader Chouaih, and Nadia Benhalima. “DFT Theoretical Calculations on (Z)-2-Hydroxy-N′-(4-Oxo-1,3-Thiazolidin-2-Ylidene) Benzohydrazide As a Methylene Tetrahydrofolatereductase Inhibitor: An in Silico Study, Molecular Docking, and Molecular Dynamics Simulations”. Turkish Computational and Theoretical Chemistry 9, no. 1 (January 2025): 90-114. https://doi.org/10.33435/tcandtc.1493008.
EndNote Boudjenane F, Rahmani R, Megrouss Y, Chouaih A, Benhalima N (January 1, 2025) DFT theoretical calculations on (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene) benzohydrazide as a methylene tetrahydrofolatereductase inhibitor: An in silico study, molecular docking, and molecular dynamics simulations. Turkish Computational and Theoretical Chemistry 9 1 90–114.
IEEE F. Boudjenane, R. Rahmani, Y. Megrouss, A. Chouaih, and N. Benhalima, “DFT theoretical calculations on (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene) benzohydrazide as a methylene tetrahydrofolatereductase inhibitor: An in silico study, molecular docking, and molecular dynamics simulations”, Turkish Comp Theo Chem (TC&TC), vol. 9, no. 1, pp. 90–114, 2025, doi: 10.33435/tcandtc.1493008.
ISNAD Boudjenane, Fatima et al. “DFT Theoretical Calculations on (Z)-2-Hydroxy-N′-(4-Oxo-1,3-Thiazolidin-2-Ylidene) Benzohydrazide As a Methylene Tetrahydrofolatereductase Inhibitor: An in Silico Study, Molecular Docking, and Molecular Dynamics Simulations”. Turkish Computational and Theoretical Chemistry 9/1 (January 2025), 90-114. https://doi.org/10.33435/tcandtc.1493008.
JAMA Boudjenane F, Rahmani R, Megrouss Y, Chouaih A, Benhalima N. DFT theoretical calculations on (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene) benzohydrazide as a methylene tetrahydrofolatereductase inhibitor: An in silico study, molecular docking, and molecular dynamics simulations. Turkish Comp Theo Chem (TC&TC). 2025;9:90–114.
MLA Boudjenane, Fatima et al. “DFT Theoretical Calculations on (Z)-2-Hydroxy-N′-(4-Oxo-1,3-Thiazolidin-2-Ylidene) Benzohydrazide As a Methylene Tetrahydrofolatereductase Inhibitor: An in Silico Study, Molecular Docking, and Molecular Dynamics Simulations”. Turkish Computational and Theoretical Chemistry, vol. 9, no. 1, 2025, pp. 90-114, doi:10.33435/tcandtc.1493008.
Vancouver Boudjenane F, Rahmani R, Megrouss Y, Chouaih A, Benhalima N. DFT theoretical calculations on (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene) benzohydrazide as a methylene tetrahydrofolatereductase inhibitor: An in silico study, molecular docking, and molecular dynamics simulations. Turkish Comp Theo Chem (TC&TC). 2025;9(1):90-114.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)