Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 1 - 7

Abstract

References

  • [1] S.Q. Asadullayeva, Q.Y. Eyyubov, Cross-relaxation energy transfers between the Er3+ ions in vitreous arsenic chalcogenide Modern Physics Letters B, 33 (2019) 1950348
  • [2] S.Q. Asadullayeva, G.M. Fatullayeva, N.A. Ismayilova, Influence of rare earth ions on the emission properties of chalcogenide glass, Solid State Communications, 339, (2021), 114484
  • [3] S.G. Asadullayeva R.A. Ahmedov. A.A. Hadieva, V.K. Sarijanova, G.M. Fatullayeva UNEC Journal of Engineering and Applied Sciences 3, (2023), 66-70
  • [4] I. Abbasov, M. Musayev, J. Huseynov, E. Gavrishuk, S. Asadullayeva, A. Rajabli, and D. Askerov, Temperature behavior of X-Ray luminescence spectra of ZnSe, Journal of Modern Physics B, 36(2) (2022) 2250018
  • [5] S.G. Asadullayeva, T.G. Naghiyev, G.A. Gafarova, Room Temperature Photoluminescence Study of Undoped ZnGa2S4 Compound, Advanced Physical Research, 1(2) (2019) 81–85
  • [6] F. L. Zheng, J.M. Zhang, Y. Zhang, V. Ji, First-principles study of the perfect and vacancy defect AlN nanoribbon, Physica B, Condens. Matter 405 (2010) 3775.
  • [7] A. J. Du, Z.H. Zhu, Y. Chen, G.Q. Lu, S.C. Smith, First principle studies of zigzag AlN nanoribbon, Chem. Phys. Lett. 469 (2009) 183.
  • [8] J.M. Zhang, F.L. Zheng, Y. Zhang, V. Ji, First-principles study on electronic properties of SiC nanoribbon, J. Mater. Sci. 45 (2010) 3259.
  • [9] P. Lou, J.Y. Lee, Band structures of narrow zigzag silicon carbon nanoribbons, J. Phys. Chem. C 113 (2009) 12637.
  • [10] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113 (2013) 3766.
  • [11] G.J. Slotman, A. Fasolino, Structure, stability and defects of single layer hexagonal BN in comparison to graphene, J. Phys. Condens. Matter 25 (2013) 045009.
  • [12] H. Kim, K. Yong, A highly efficient light capturing 2D (nanosheet)–1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells, Phys. Chem. Chem. Phys. 15 (2013) 2109
  • [13] X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, High‐performance organic‐inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates, Adv. Funct. Mater. 23 (2013) 1202–1209
  • [14] Y. Dai, B. Yu, Y. Ye, P. C. Wu, H. Meng, L. Dai, and G. G. Qing, High-performance CdSe nanobelt based MESFETs and their application in photodetection, J. Mater. Chem. 22 (2012) 18442–18446
  • [15] S.G. Asadullayeva, N.A. Ismayilova, Q.Y. Eyyubov, Optical and electronic properties of defect chalcopyrite ZnGa2Se4: Experimental and theoretical investigations, Solid State Communications, 356 (2022) 114950
  • [16] S.G. Asadullayeva, Z.A. Jahangirli, T.G. Naghiyev, D.A. Mammadov, Optical and Dynamic Properties of ZnGa2S4, Status Solidi (B) Basic Research, 258(8) (2021) 21001`01
  • [17] S.G. Asadullayeva, N.A. Ismayilova, T.G. Naghiyev, Infrared photoluminescence and dynamic properties of ZnGa2Se4, Modern Physics Letters B, 37(34) (2023) 2350166
  • [18] D. Xu, X. Shi, G. Gao, L. Gui, Y. Tang, Electrochemical preparation of CdSe nanowire arrays, J. Phys. Chem. B, 104 (2000) 5061.
  • [19] X. C. Jiang, B. Mayer, T. Herricks, Y. N. Xia, Adv. Mater. 15, (2003) 740.
  • [20] R. Venugopal, P. I. Lin, C. C. Liu, Y. T. Chen, J. Am. Chem. Soc. 127 (2005) 262.
  • [21] P.V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 111 (2007) 2834-2860.
  • [22] Hillhouse, H. W.; Beard, M. C., Solar Cells from Colloidal Nanocrystals: Fundamentals, Materials, Devices and Economics. Curr. Opin. Colloid. In. 14(4) (2009) 245-259.
  • [23] P.V. Kamat, Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem. Rev. 93(1) (1993) 267-300.
  • [24] T. L.Thompson, J. T.Yates, TiO2-Based Photocatalysis: Surface defects, Oxygen and Charge Transfer. Topics in Catalysis, 35(3-4) (2005) 197-210.
  • [25] T.Tachikawa, M.Fujitsuka, Majima, T., Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts. J. Phys. Chem. C, 111(14) (2007) 5259-5275.
  • [26] X.D. Wen, R. Hoffmann, N.W. Ashcroft, Two‐dimensional CdSe nanosheets and their interaction with stabilizing ligands, Adv. Mater. 25 (2013), 261.
  • [27] N. Chen, G. Yu, X. Gu, L. Chen, Y. Xie, F. Liu, F. Wang, X. Ye, W. Shi, Band structure engineering of CdSe nanosheet by strain: A first-principles study, Chem. Phys. Lett. 595 (2014) 91.
  • [28] G. Yu, N. Chen, L. Chen, Y. Xie, F. Wang, X. Ye, Strain effect on the electronic and optical properties of CdSe nanosheet, Phys. Status Solidi A 211 (2014) 952.
  • [29] S. Jha, J. C. Qian, O. Kutsay, J. Kovac, Jr., C. Y. Luan, J. A. Zapien, W. J. Zhang, S. T. Lee, I. Bello, Violet-blue LEDs based on p-GaN/nZnO nanorods and their stability, Nanotechnology 22 (2011) 245202– 245210.
  • [30] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421 (2003) 238–241.
  • [31] W.C. Kwak, S.H. Han, T.G. Kim, Y.M. Sung, Electrodeposition of Cu(In,Ga)Se2 crystals on high-density CdS nanowire arrays for photovoltaic applications, Cryst. Growth Des. 10 (2010) 5297–5301.
  • [32] G.Yua, L. Chenb, X.Yea Physics Letters A 379 (2015) 41–46
  • [33] J. Deb, D. Paul, U. Sarkar AIP Conference Proceedings 1, (1953), 030235
  • [34] R. Chandiramouli, Influence of Se and Zn substitution on the electronic transport on a CdTe nanotube-based molecular device: a firstprinciples study, Structural Chemistry 25 (2014) 1563–1572.
  • [35] Shelly L. Elizondo and John W. Mintmire, First-Principles Study of the Optical Properties of ZnO Single-Wall Nanotubes, J. Phys. Chem. C 111 (2007) 17821-17826
  • [36] R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, et.al. Electronic and structural properties of zinc chalcogenides ZnX (X=S, Se, Te), Journal of Alloys and Compounds 359 (2003) 22–26.
  • [37] Peko¨z R, Erkoc¸ S A density functional theory study on the structures and energetics of CdmTen clusters (m+n⩽ 6), Comput Mater Sci 45 (2009) 912-920
  • [38] S. Alnemrat, YH Park, I. Vasiliev, Ab initio study of ZnSe and CdTe semiconductor quantum dots, Physica E 57 (2014) 96–102
  • [39] S. Sriram, R. Chandiramouli, DFT studies on the stability of linear, ring, and 3D structures in CdTe nanoclusters, Res Chem Intermed.41 (2013) 2095–2124
  • [40] A. Al-Bassam, A. Al-Juffali and A. A1-Dhafiri, Structure and lattice parameters of cadmium sulphide selenide (CdSxSe1− x) mixed crystals, Journal of Crystal Growth 135 (1994) 476-480
  • [41] A. Abbassi, Z. Zarhri, Ch. Azahaf, H. Ez Zahraouy and A. Benyoussef. comparative study of cubic and wurtzite CdSe, Springer Plus 4 (2015) 543
  • [42] G. Amiri, S. Fatahian1, S. Mahmoudi, Preparation and Optical Properties Assessment of CdSe Quantum Dots, Mater. sci. appl. 4 (2013) 134-137
  • [43] S. Lade, M. Uplane and C. Lokhande, Photoelectrochemical properties of CdX (X= S, Se, Te) films electrodeposited from aqueous and non-aqueous baths, Mater. Chem. Phys. 68 (2001) 36-41
  • [44] R. Kale, C. Lokhande, Band gap shift, structural characterization and phase transformation of CdSe thin films from nanocrystalline cubic to nanorod hexagonal on air annealing, Semicond Sci Technol. 20 (2005) 1–9.
  • [45] J. Tian, X.Sun, T. Song, Y.Ouyang, T. Wang, G. Jiang, Ferromagnetism and the Optical Properties of Mn-Doped CdSe with the Wurtzite Structure, J Supercond. Nov. Magn. 30 (2017) 3109–3115
  • [46] Li Zhanhai, Cheng Fan, Physica E: Low-Dimensional Systems and Nanostructures, 124 (2020) 114320-114320
  • [47] N. A. Ismayilova, Electronic and magnetic properties of Mn-doped CdSe nanoribbon: first-principles calculations, Eur. Phys. J. Plus 139 (2024) 321.
  • [48] N.A. Ismayilova, Z.A. Jahangirli, S.H. Jabarov, Mn Impurity in InN Nanoribbon: an Ab Initio Investigation, Journal of Superconductivity and Novel Magnetism 36 (2023) 1983-1990.
  • [49] N.A. Ismayilova, S.H. Jabarov, First principles calculations of the magnetic properties of PbTi1−xMnxO3, Canadian Journal of Physics 100 (2022) 398-404.

DFT study of CdSe nanotube doped with Cr atom

Year 2025, Volume: 9 Issue: 2, 1 - 7

Abstract

Electronic and optical properties of doped with Cr atom CdSe nanotube investigated from first principles calculations. It was found that, doped with Cr atoms CdSe nanotube show half metallic properties. The imaginary and real part of dielectric function were calculated for pure and Cr doped nanotube and compared. Our calculations show that Cr atom induce blue shift for spin down states and red shift for spin up states. The half metallic behavior makes Cr doped CdSe nanotube suitable to be used in spintronic devices.

References

  • [1] S.Q. Asadullayeva, Q.Y. Eyyubov, Cross-relaxation energy transfers between the Er3+ ions in vitreous arsenic chalcogenide Modern Physics Letters B, 33 (2019) 1950348
  • [2] S.Q. Asadullayeva, G.M. Fatullayeva, N.A. Ismayilova, Influence of rare earth ions on the emission properties of chalcogenide glass, Solid State Communications, 339, (2021), 114484
  • [3] S.G. Asadullayeva R.A. Ahmedov. A.A. Hadieva, V.K. Sarijanova, G.M. Fatullayeva UNEC Journal of Engineering and Applied Sciences 3, (2023), 66-70
  • [4] I. Abbasov, M. Musayev, J. Huseynov, E. Gavrishuk, S. Asadullayeva, A. Rajabli, and D. Askerov, Temperature behavior of X-Ray luminescence spectra of ZnSe, Journal of Modern Physics B, 36(2) (2022) 2250018
  • [5] S.G. Asadullayeva, T.G. Naghiyev, G.A. Gafarova, Room Temperature Photoluminescence Study of Undoped ZnGa2S4 Compound, Advanced Physical Research, 1(2) (2019) 81–85
  • [6] F. L. Zheng, J.M. Zhang, Y. Zhang, V. Ji, First-principles study of the perfect and vacancy defect AlN nanoribbon, Physica B, Condens. Matter 405 (2010) 3775.
  • [7] A. J. Du, Z.H. Zhu, Y. Chen, G.Q. Lu, S.C. Smith, First principle studies of zigzag AlN nanoribbon, Chem. Phys. Lett. 469 (2009) 183.
  • [8] J.M. Zhang, F.L. Zheng, Y. Zhang, V. Ji, First-principles study on electronic properties of SiC nanoribbon, J. Mater. Sci. 45 (2010) 3259.
  • [9] P. Lou, J.Y. Lee, Band structures of narrow zigzag silicon carbon nanoribbons, J. Phys. Chem. C 113 (2009) 12637.
  • [10] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113 (2013) 3766.
  • [11] G.J. Slotman, A. Fasolino, Structure, stability and defects of single layer hexagonal BN in comparison to graphene, J. Phys. Condens. Matter 25 (2013) 045009.
  • [12] H. Kim, K. Yong, A highly efficient light capturing 2D (nanosheet)–1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells, Phys. Chem. Chem. Phys. 15 (2013) 2109
  • [13] X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, High‐performance organic‐inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates, Adv. Funct. Mater. 23 (2013) 1202–1209
  • [14] Y. Dai, B. Yu, Y. Ye, P. C. Wu, H. Meng, L. Dai, and G. G. Qing, High-performance CdSe nanobelt based MESFETs and their application in photodetection, J. Mater. Chem. 22 (2012) 18442–18446
  • [15] S.G. Asadullayeva, N.A. Ismayilova, Q.Y. Eyyubov, Optical and electronic properties of defect chalcopyrite ZnGa2Se4: Experimental and theoretical investigations, Solid State Communications, 356 (2022) 114950
  • [16] S.G. Asadullayeva, Z.A. Jahangirli, T.G. Naghiyev, D.A. Mammadov, Optical and Dynamic Properties of ZnGa2S4, Status Solidi (B) Basic Research, 258(8) (2021) 21001`01
  • [17] S.G. Asadullayeva, N.A. Ismayilova, T.G. Naghiyev, Infrared photoluminescence and dynamic properties of ZnGa2Se4, Modern Physics Letters B, 37(34) (2023) 2350166
  • [18] D. Xu, X. Shi, G. Gao, L. Gui, Y. Tang, Electrochemical preparation of CdSe nanowire arrays, J. Phys. Chem. B, 104 (2000) 5061.
  • [19] X. C. Jiang, B. Mayer, T. Herricks, Y. N. Xia, Adv. Mater. 15, (2003) 740.
  • [20] R. Venugopal, P. I. Lin, C. C. Liu, Y. T. Chen, J. Am. Chem. Soc. 127 (2005) 262.
  • [21] P.V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 111 (2007) 2834-2860.
  • [22] Hillhouse, H. W.; Beard, M. C., Solar Cells from Colloidal Nanocrystals: Fundamentals, Materials, Devices and Economics. Curr. Opin. Colloid. In. 14(4) (2009) 245-259.
  • [23] P.V. Kamat, Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem. Rev. 93(1) (1993) 267-300.
  • [24] T. L.Thompson, J. T.Yates, TiO2-Based Photocatalysis: Surface defects, Oxygen and Charge Transfer. Topics in Catalysis, 35(3-4) (2005) 197-210.
  • [25] T.Tachikawa, M.Fujitsuka, Majima, T., Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts. J. Phys. Chem. C, 111(14) (2007) 5259-5275.
  • [26] X.D. Wen, R. Hoffmann, N.W. Ashcroft, Two‐dimensional CdSe nanosheets and their interaction with stabilizing ligands, Adv. Mater. 25 (2013), 261.
  • [27] N. Chen, G. Yu, X. Gu, L. Chen, Y. Xie, F. Liu, F. Wang, X. Ye, W. Shi, Band structure engineering of CdSe nanosheet by strain: A first-principles study, Chem. Phys. Lett. 595 (2014) 91.
  • [28] G. Yu, N. Chen, L. Chen, Y. Xie, F. Wang, X. Ye, Strain effect on the electronic and optical properties of CdSe nanosheet, Phys. Status Solidi A 211 (2014) 952.
  • [29] S. Jha, J. C. Qian, O. Kutsay, J. Kovac, Jr., C. Y. Luan, J. A. Zapien, W. J. Zhang, S. T. Lee, I. Bello, Violet-blue LEDs based on p-GaN/nZnO nanorods and their stability, Nanotechnology 22 (2011) 245202– 245210.
  • [30] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421 (2003) 238–241.
  • [31] W.C. Kwak, S.H. Han, T.G. Kim, Y.M. Sung, Electrodeposition of Cu(In,Ga)Se2 crystals on high-density CdS nanowire arrays for photovoltaic applications, Cryst. Growth Des. 10 (2010) 5297–5301.
  • [32] G.Yua, L. Chenb, X.Yea Physics Letters A 379 (2015) 41–46
  • [33] J. Deb, D. Paul, U. Sarkar AIP Conference Proceedings 1, (1953), 030235
  • [34] R. Chandiramouli, Influence of Se and Zn substitution on the electronic transport on a CdTe nanotube-based molecular device: a firstprinciples study, Structural Chemistry 25 (2014) 1563–1572.
  • [35] Shelly L. Elizondo and John W. Mintmire, First-Principles Study of the Optical Properties of ZnO Single-Wall Nanotubes, J. Phys. Chem. C 111 (2007) 17821-17826
  • [36] R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, et.al. Electronic and structural properties of zinc chalcogenides ZnX (X=S, Se, Te), Journal of Alloys and Compounds 359 (2003) 22–26.
  • [37] Peko¨z R, Erkoc¸ S A density functional theory study on the structures and energetics of CdmTen clusters (m+n⩽ 6), Comput Mater Sci 45 (2009) 912-920
  • [38] S. Alnemrat, YH Park, I. Vasiliev, Ab initio study of ZnSe and CdTe semiconductor quantum dots, Physica E 57 (2014) 96–102
  • [39] S. Sriram, R. Chandiramouli, DFT studies on the stability of linear, ring, and 3D structures in CdTe nanoclusters, Res Chem Intermed.41 (2013) 2095–2124
  • [40] A. Al-Bassam, A. Al-Juffali and A. A1-Dhafiri, Structure and lattice parameters of cadmium sulphide selenide (CdSxSe1− x) mixed crystals, Journal of Crystal Growth 135 (1994) 476-480
  • [41] A. Abbassi, Z. Zarhri, Ch. Azahaf, H. Ez Zahraouy and A. Benyoussef. comparative study of cubic and wurtzite CdSe, Springer Plus 4 (2015) 543
  • [42] G. Amiri, S. Fatahian1, S. Mahmoudi, Preparation and Optical Properties Assessment of CdSe Quantum Dots, Mater. sci. appl. 4 (2013) 134-137
  • [43] S. Lade, M. Uplane and C. Lokhande, Photoelectrochemical properties of CdX (X= S, Se, Te) films electrodeposited from aqueous and non-aqueous baths, Mater. Chem. Phys. 68 (2001) 36-41
  • [44] R. Kale, C. Lokhande, Band gap shift, structural characterization and phase transformation of CdSe thin films from nanocrystalline cubic to nanorod hexagonal on air annealing, Semicond Sci Technol. 20 (2005) 1–9.
  • [45] J. Tian, X.Sun, T. Song, Y.Ouyang, T. Wang, G. Jiang, Ferromagnetism and the Optical Properties of Mn-Doped CdSe with the Wurtzite Structure, J Supercond. Nov. Magn. 30 (2017) 3109–3115
  • [46] Li Zhanhai, Cheng Fan, Physica E: Low-Dimensional Systems and Nanostructures, 124 (2020) 114320-114320
  • [47] N. A. Ismayilova, Electronic and magnetic properties of Mn-doped CdSe nanoribbon: first-principles calculations, Eur. Phys. J. Plus 139 (2024) 321.
  • [48] N.A. Ismayilova, Z.A. Jahangirli, S.H. Jabarov, Mn Impurity in InN Nanoribbon: an Ab Initio Investigation, Journal of Superconductivity and Novel Magnetism 36 (2023) 1983-1990.
  • [49] N.A. Ismayilova, S.H. Jabarov, First principles calculations of the magnetic properties of PbTi1−xMnxO3, Canadian Journal of Physics 100 (2022) 398-404.
There are 49 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Research Article
Authors

Jeyhun Guliyev

Javid Jalilli

Narmin Ismayilova 0000-0002-5388-4175

Early Pub Date September 19, 2024
Publication Date
Submission Date June 27, 2024
Acceptance Date July 25, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Guliyev, J., Jalilli, J., & Ismayilova, N. (2024). DFT study of CdSe nanotube doped with Cr atom. Turkish Computational and Theoretical Chemistry, 9(2), 1-7.
AMA Guliyev J, Jalilli J, Ismayilova N. DFT study of CdSe nanotube doped with Cr atom. Turkish Comp Theo Chem (TC&TC). September 2024;9(2):1-7.
Chicago Guliyev, Jeyhun, Javid Jalilli, and Narmin Ismayilova. “DFT Study of CdSe Nanotube Doped With Cr Atom”. Turkish Computational and Theoretical Chemistry 9, no. 2 (September 2024): 1-7.
EndNote Guliyev J, Jalilli J, Ismayilova N (September 1, 2024) DFT study of CdSe nanotube doped with Cr atom. Turkish Computational and Theoretical Chemistry 9 2 1–7.
IEEE J. Guliyev, J. Jalilli, and N. Ismayilova, “DFT study of CdSe nanotube doped with Cr atom”, Turkish Comp Theo Chem (TC&TC), vol. 9, no. 2, pp. 1–7, 2024.
ISNAD Guliyev, Jeyhun et al. “DFT Study of CdSe Nanotube Doped With Cr Atom”. Turkish Computational and Theoretical Chemistry 9/2 (September 2024), 1-7.
JAMA Guliyev J, Jalilli J, Ismayilova N. DFT study of CdSe nanotube doped with Cr atom. Turkish Comp Theo Chem (TC&TC). 2024;9:1–7.
MLA Guliyev, Jeyhun et al. “DFT Study of CdSe Nanotube Doped With Cr Atom”. Turkish Computational and Theoretical Chemistry, vol. 9, no. 2, 2024, pp. 1-7.
Vancouver Guliyev J, Jalilli J, Ismayilova N. DFT study of CdSe nanotube doped with Cr atom. Turkish Comp Theo Chem (TC&TC). 2024;9(2):1-7.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)