Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 5, 125 - 137

Abstract

References

  • [1] M. A. Gouda, M. A. Berghot, G. E. Abd El Ghani, A. E. M. Khalil, Chemistry of 2-amino-3-cyanopyridines, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 44(3) (2014) 297-330.
  • [2] I. Mamedov, F. Naghiyev, A. Maharramov, O. Uwangue, A. Farewell, P. Sunnerhagen, M. Erdelyi, Antibacterial activity of 2-amino-3-cyanopyridine derivatives, Mendeleev Communications, 30(4) (2020) 498-499.
  • [3] S. Thakrar, A. Bavishi, A. Radadiya, H. Vala, S. Parekh, D. Bhavsar, R. Chaniyara, A. Shah, An Efficient Microwave-Assisted Synthesis and Antimicrobial Activity of Novel 2-Amino 3-Cyano Pyridine Derivatives using Two Reusable Solid Acids as Catalysts, 51(3) (2014) 555-561.
  • [4] I. Mamedov, E. Mamedov, I. Gasimova, Y. Mamedova, Synthesis of 2-Amino-3-cyanopyridine Derivatives and Investigation of Their Antibacterial and Antifungal Properties, Indonesian Journal of Chemical Research, 11(1) (2023) 23-28.
  • [5] S. G. Konda, V. T. Khedkar, B. S. Dawane, Synthesis of some new 2-amino-3-cyano-4-aryl-6-(1-napthyl amino)- pyridines as antibacterial agents, Journal of Chemical and Pharmaceutical Research, 2(1) (2010) 187-191.
  • [6] M. Purushothaman, K. Loganathan, K. Sithick Ali, Synthesis, characterization and biological importance of aminocyanopyridines, International Journal of ChemTech Research, 4(2) (2012) 479-483.
  • [7] M. Purushothaman, K. Loganathan, K. Sithick Ali, J. A. Selvin, An efficient and facile synthesis of coumarin derivatives as potent antimicrobial agents, International Journal of ChemTech Research, 6(1) 2014, 538-546.
  • [8] K. Loganathan, K. Sithick Ali, Synthesis, characterization and biological studies of some azo compounds, Journal of Chemical and Pharmaceutical Research, 8(5) (2016) 895-899.
  • [9] K. Loganathan, K. Sithick Ali, In silico docking study of azo compounds of 4, 6-dipropanoylresorcinol as EGFR antagonists, Journal of Chemical and Pharmaceutical Research, 8(1) (2016) 542-548.
  • [10] M. Beemarao, S. Silambarasan, A. Jamal Abdul Nasser, M. Purushothaman, K. Ravichandran, Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chloro¬phen¬yl)-7-hy¬dr¬oxy-4H-benzo[1,2-b]pyran-3-carbo¬nitrile, Acta Crystallographica Section E: Crystallographic Communications, 75(11) (2019) 1638-1642,
  • [11] K. Loganathan, A. Anandan, M. Purushothaman, P. Daniel Jebaraj, K. Thanigaimani, J.M. Percino, P. Venkatesan, Synthesis, crystal structure, Hirshfeld surface analysis, and DFT studies of 2-bromo-4,6-bis(dibromoacetyl)resorcinol, Structural Chemistry, 35(2) (2024) 1-14,
  • [12] M. Hamsaveni, Ruthu Ramachandra Hegde, B. Sahana, B.S. Chethan, K. Pruthviraj, N. Maithra, D.C. Vinay Kumar, S.V. Niranjana, K. Sunil, N.K. Lokanath, Synthesis, biological evaluation of novel pyridine derivative as antibacterial agent: DFT, molecular docking and ADMET studies, Journal of Molecular Structure, 1318(1) (2024) 139367.
  • [13] C. Jiao, M.A. Zhen, Y. Chao-guo, Three-component Reaction of Aromatic Aldehyde, Malononitrile and Aliphatic Amine Leading to Different Pyridine Derivatives, Chemical Research in Chinese Universities, 26(6) (2010) 937-941.
  • [14] M. Purushothaman, K. Thanigaimani, S. Arshad, S. Silambarasan, I. Abdul Razak, K. Sithick Ali, 2,6-Di¬amino-4-(4-chloro¬phen¬yl)-1-methyl-1,4-di¬hydro-pyridine-3,5-dicarbo¬nitrile, Acta Crystallographica Section E: Crystallographic Communications, 70(7) (2014) 0812-0813.
  • [15] R. Dennington, T. A. Keith, J. M. Millam, GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS, 13(1) (2016).
  • [16] S. Erkan, C. A. Yıldız, Synthesis, spectroscopic and electronic structure analyses, DFT studies and molecular docking applications of isatin hydrazone derivatives. Journal of Molecular Structure, 1327 (2025) 141150.
  • [17] I. Y. Zhang, J. Wu, X. Xu, Extending the reliability and applicability of B3LYP. Chemical Communications, 46(18) (2010) 3057-3070.
  • [18] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss, 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 22(9) (2001) 976-984.
  • [19] K. Dybiec, A. Gryff‐Keller, Remarks on GIAO‐DFT predictions of 13C chemical shifts. Magnetic Resonance in Chemistry, 47(1) (2009) 63-66.
  • [20] S.L. Maestro, L.L.C. Schrodinger, New York, NY, USA 2022.
  • [21] Schödinger Release, 2: Protein preparation wizard, epik, schrödinger, LLC, New York, NY, 2021, Impact, Schrödinger, LLC, New York, NY 2021.
  • [22] M. M. Elbadawi, A. I. Khodair, M. K. Awad, S. E. Kassab, M. T. Elsaady, K.R.A. Abdellatif, Design, synthesis and biological evaluation of novel thiohydantoin derivatives as antiproliferative agents: A combined experimental and theoretical assessments. Journal of Molecular Structure, 1249 (2022) 131574.
  • [23] Z. Bikadi, E. Hazai, Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock, Journal of cheminformatics, 1(15) (2009) 1-16.
  • [24] R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, A semiempirical free energy force field with charge‐based desolvation. Journal of computational chemistry, 28(6) (2007) 1145-1152.
  • [25] C. A. Yıldız, E. Güney, V. Nasif, D. Karakaş, S. Erkan, Investigation of substituent effect on rhenium complexes by DFT methods: Structural analysis, IR spectrum, quantum chemical parameter, NLO and OLED properties, molecular docking. Journal of MolecularStructure, 1278 (2023)134835.
  • [26] A. Singh, K. R. Ansari, M. A. Quraishi, S. Kaya, S. Erkan, Chemically modified guar gum and ethyl acrylate composite as a new corrosion inhibitor for reduction in hydrogen evolution and tubular steel corrosion protection in acidic environment. International Journal of Hydrogen Energy, 46(14) (2021) 9452-9465.
  • [27] B. C. Smith, Infrared spectral interpretation: A systematic approach. CRC press. 2018.
  • [28] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvyan, Introduction to spectroscopy. 2015.
  • [29] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7) (1993) 5648-5652.
  • [30] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2) (1988) 785.
  • [31] A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree−Fock, Møller−Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. The Journal of Physical Chemistry, 100(41) (1996) 16502-16513.
  • [32] T. D.W. Claridge, High-resolution NMR techniques in organic chemistry, 3rd Edition, Elsevier Science, 2016.
  • [33] P. Hore, Nuclear magnetic resonance. Oxford University Press. 2015.
  • [34] E. Çalışkan, A. Kaplan, G. Şekerci, İ. Çapan, S. Tekin, S. Erkan, K. Koran, S. Sandal, A. O. Görgülü, Synthesis, docking studies, in vitro cytotoxicity evaluation and DNA damage mechanism of new tyrosine‐based tripeptides. Journal of biochemical and molecular toxicology, 37(8) (2023) e23388.
  • [35] C. Y. Huang, C. H. Hsu, Y. J. Sun, H. N. Wu, C. D. Hsiao, Complexed crystal structure of replication restart primosome protein PriB reveals a novel single-stranded DNA-binding mode. Nucleic Acids Research, 34(14) (2006) 3878-3886.
  • [36] S. H. Light, L. A. Cahoon, K. V. Mahasenan, M. Lee, B. Boggess, A. S. Halavaty, S. Mobashery, N.E. Freitag, W. F. Anderson, Transferase versus hydrolase: the role of conformational flexibility in reaction specificity. Structure, 25(2) (2017) 295-304.
  • [37] Q. Ye, R. K. Lau, I. T. Mathews, E. A. Birkholz, J. D. Watrous, C. S. Azimi, J. Pogliano, M. Jain, K.D. Corbett, HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Molecular cell, 77(4) (2020) 709-722.
  • [38] L. Deng, J. Song, X. Gao, J. Wang, H. Yu, X. Chen, N. Varki, Y. Naito-Matsui, J.E. Galán, A. Varki, Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi. Cell, 159(6) (2014) 1290-1299.
  • [39] S. Khademi, D. Zhang, S. M. Swanson, A. Wartenberg, K. Witte, E. F. Meyer, Determination of the structure of an endoglucanase from Aspergillus Niger and its mode of inhibition by palladium chloride. Biological Crystallography, 58(4) (2002) 660-667.
  • [40] M. V. Keniya, M. Sabherwal, R. K.Wilson, M. A. Woods, A. A. Sagatova, J. D. Tyndall, B. C. Monk, Crystal structures of full-length lanosterol 14α-demethylases of prominent fungal pathogens Candida albicans and Candida glabrata provide tools for antifungal discovery. Antimicrobial agents and chemotherapy, 62(11) (2018), e01134-18.

CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES

Year 2025, Volume: 9 Issue: 5, 125 - 137

Abstract

Structural and electronic studies on our previously synthesized 4a–4d were conducted at the B3LYP/6-31G(d,p) computational level. IR and NMR spectra for 4a-4d were calculated. The frontier molecular orbitals and molecular electrostatic potential map of compounds 4a–4d were calculated to further speculate on the electronic property and active sites. Molecular docking for antibacterial and antifungal activities was presented.

Supporting Institution

The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). The authors MP, KL & DJ thank the Management and Principal of Jamal Mohamed College, for providing necessary laboratory facilities and DST-FIST sponsored Jamal Instrumentation Centre, Tiruchirappalli for spectral analysis.

References

  • [1] M. A. Gouda, M. A. Berghot, G. E. Abd El Ghani, A. E. M. Khalil, Chemistry of 2-amino-3-cyanopyridines, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 44(3) (2014) 297-330.
  • [2] I. Mamedov, F. Naghiyev, A. Maharramov, O. Uwangue, A. Farewell, P. Sunnerhagen, M. Erdelyi, Antibacterial activity of 2-amino-3-cyanopyridine derivatives, Mendeleev Communications, 30(4) (2020) 498-499.
  • [3] S. Thakrar, A. Bavishi, A. Radadiya, H. Vala, S. Parekh, D. Bhavsar, R. Chaniyara, A. Shah, An Efficient Microwave-Assisted Synthesis and Antimicrobial Activity of Novel 2-Amino 3-Cyano Pyridine Derivatives using Two Reusable Solid Acids as Catalysts, 51(3) (2014) 555-561.
  • [4] I. Mamedov, E. Mamedov, I. Gasimova, Y. Mamedova, Synthesis of 2-Amino-3-cyanopyridine Derivatives and Investigation of Their Antibacterial and Antifungal Properties, Indonesian Journal of Chemical Research, 11(1) (2023) 23-28.
  • [5] S. G. Konda, V. T. Khedkar, B. S. Dawane, Synthesis of some new 2-amino-3-cyano-4-aryl-6-(1-napthyl amino)- pyridines as antibacterial agents, Journal of Chemical and Pharmaceutical Research, 2(1) (2010) 187-191.
  • [6] M. Purushothaman, K. Loganathan, K. Sithick Ali, Synthesis, characterization and biological importance of aminocyanopyridines, International Journal of ChemTech Research, 4(2) (2012) 479-483.
  • [7] M. Purushothaman, K. Loganathan, K. Sithick Ali, J. A. Selvin, An efficient and facile synthesis of coumarin derivatives as potent antimicrobial agents, International Journal of ChemTech Research, 6(1) 2014, 538-546.
  • [8] K. Loganathan, K. Sithick Ali, Synthesis, characterization and biological studies of some azo compounds, Journal of Chemical and Pharmaceutical Research, 8(5) (2016) 895-899.
  • [9] K. Loganathan, K. Sithick Ali, In silico docking study of azo compounds of 4, 6-dipropanoylresorcinol as EGFR antagonists, Journal of Chemical and Pharmaceutical Research, 8(1) (2016) 542-548.
  • [10] M. Beemarao, S. Silambarasan, A. Jamal Abdul Nasser, M. Purushothaman, K. Ravichandran, Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chloro¬phen¬yl)-7-hy¬dr¬oxy-4H-benzo[1,2-b]pyran-3-carbo¬nitrile, Acta Crystallographica Section E: Crystallographic Communications, 75(11) (2019) 1638-1642,
  • [11] K. Loganathan, A. Anandan, M. Purushothaman, P. Daniel Jebaraj, K. Thanigaimani, J.M. Percino, P. Venkatesan, Synthesis, crystal structure, Hirshfeld surface analysis, and DFT studies of 2-bromo-4,6-bis(dibromoacetyl)resorcinol, Structural Chemistry, 35(2) (2024) 1-14,
  • [12] M. Hamsaveni, Ruthu Ramachandra Hegde, B. Sahana, B.S. Chethan, K. Pruthviraj, N. Maithra, D.C. Vinay Kumar, S.V. Niranjana, K. Sunil, N.K. Lokanath, Synthesis, biological evaluation of novel pyridine derivative as antibacterial agent: DFT, molecular docking and ADMET studies, Journal of Molecular Structure, 1318(1) (2024) 139367.
  • [13] C. Jiao, M.A. Zhen, Y. Chao-guo, Three-component Reaction of Aromatic Aldehyde, Malononitrile and Aliphatic Amine Leading to Different Pyridine Derivatives, Chemical Research in Chinese Universities, 26(6) (2010) 937-941.
  • [14] M. Purushothaman, K. Thanigaimani, S. Arshad, S. Silambarasan, I. Abdul Razak, K. Sithick Ali, 2,6-Di¬amino-4-(4-chloro¬phen¬yl)-1-methyl-1,4-di¬hydro-pyridine-3,5-dicarbo¬nitrile, Acta Crystallographica Section E: Crystallographic Communications, 70(7) (2014) 0812-0813.
  • [15] R. Dennington, T. A. Keith, J. M. Millam, GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS, 13(1) (2016).
  • [16] S. Erkan, C. A. Yıldız, Synthesis, spectroscopic and electronic structure analyses, DFT studies and molecular docking applications of isatin hydrazone derivatives. Journal of Molecular Structure, 1327 (2025) 141150.
  • [17] I. Y. Zhang, J. Wu, X. Xu, Extending the reliability and applicability of B3LYP. Chemical Communications, 46(18) (2010) 3057-3070.
  • [18] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss, 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 22(9) (2001) 976-984.
  • [19] K. Dybiec, A. Gryff‐Keller, Remarks on GIAO‐DFT predictions of 13C chemical shifts. Magnetic Resonance in Chemistry, 47(1) (2009) 63-66.
  • [20] S.L. Maestro, L.L.C. Schrodinger, New York, NY, USA 2022.
  • [21] Schödinger Release, 2: Protein preparation wizard, epik, schrödinger, LLC, New York, NY, 2021, Impact, Schrödinger, LLC, New York, NY 2021.
  • [22] M. M. Elbadawi, A. I. Khodair, M. K. Awad, S. E. Kassab, M. T. Elsaady, K.R.A. Abdellatif, Design, synthesis and biological evaluation of novel thiohydantoin derivatives as antiproliferative agents: A combined experimental and theoretical assessments. Journal of Molecular Structure, 1249 (2022) 131574.
  • [23] Z. Bikadi, E. Hazai, Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock, Journal of cheminformatics, 1(15) (2009) 1-16.
  • [24] R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, A semiempirical free energy force field with charge‐based desolvation. Journal of computational chemistry, 28(6) (2007) 1145-1152.
  • [25] C. A. Yıldız, E. Güney, V. Nasif, D. Karakaş, S. Erkan, Investigation of substituent effect on rhenium complexes by DFT methods: Structural analysis, IR spectrum, quantum chemical parameter, NLO and OLED properties, molecular docking. Journal of MolecularStructure, 1278 (2023)134835.
  • [26] A. Singh, K. R. Ansari, M. A. Quraishi, S. Kaya, S. Erkan, Chemically modified guar gum and ethyl acrylate composite as a new corrosion inhibitor for reduction in hydrogen evolution and tubular steel corrosion protection in acidic environment. International Journal of Hydrogen Energy, 46(14) (2021) 9452-9465.
  • [27] B. C. Smith, Infrared spectral interpretation: A systematic approach. CRC press. 2018.
  • [28] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvyan, Introduction to spectroscopy. 2015.
  • [29] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7) (1993) 5648-5652.
  • [30] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2) (1988) 785.
  • [31] A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree−Fock, Møller−Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. The Journal of Physical Chemistry, 100(41) (1996) 16502-16513.
  • [32] T. D.W. Claridge, High-resolution NMR techniques in organic chemistry, 3rd Edition, Elsevier Science, 2016.
  • [33] P. Hore, Nuclear magnetic resonance. Oxford University Press. 2015.
  • [34] E. Çalışkan, A. Kaplan, G. Şekerci, İ. Çapan, S. Tekin, S. Erkan, K. Koran, S. Sandal, A. O. Görgülü, Synthesis, docking studies, in vitro cytotoxicity evaluation and DNA damage mechanism of new tyrosine‐based tripeptides. Journal of biochemical and molecular toxicology, 37(8) (2023) e23388.
  • [35] C. Y. Huang, C. H. Hsu, Y. J. Sun, H. N. Wu, C. D. Hsiao, Complexed crystal structure of replication restart primosome protein PriB reveals a novel single-stranded DNA-binding mode. Nucleic Acids Research, 34(14) (2006) 3878-3886.
  • [36] S. H. Light, L. A. Cahoon, K. V. Mahasenan, M. Lee, B. Boggess, A. S. Halavaty, S. Mobashery, N.E. Freitag, W. F. Anderson, Transferase versus hydrolase: the role of conformational flexibility in reaction specificity. Structure, 25(2) (2017) 295-304.
  • [37] Q. Ye, R. K. Lau, I. T. Mathews, E. A. Birkholz, J. D. Watrous, C. S. Azimi, J. Pogliano, M. Jain, K.D. Corbett, HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Molecular cell, 77(4) (2020) 709-722.
  • [38] L. Deng, J. Song, X. Gao, J. Wang, H. Yu, X. Chen, N. Varki, Y. Naito-Matsui, J.E. Galán, A. Varki, Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi. Cell, 159(6) (2014) 1290-1299.
  • [39] S. Khademi, D. Zhang, S. M. Swanson, A. Wartenberg, K. Witte, E. F. Meyer, Determination of the structure of an endoglucanase from Aspergillus Niger and its mode of inhibition by palladium chloride. Biological Crystallography, 58(4) (2002) 660-667.
  • [40] M. V. Keniya, M. Sabherwal, R. K.Wilson, M. A. Woods, A. A. Sagatova, J. D. Tyndall, B. C. Monk, Crystal structures of full-length lanosterol 14α-demethylases of prominent fungal pathogens Candida albicans and Candida glabrata provide tools for antifungal discovery. Antimicrobial agents and chemotherapy, 62(11) (2018), e01134-18.
There are 40 citations in total.

Details

Primary Language English
Subjects Molecular Imaging
Journal Section Research Article
Authors

Michael Purushothaman 0000-0002-2176-8815

Sultan Erkan 0000-0001-6744-929X

Karuppiah Loganathan 0000-0001-9364-8954

Paul Daniel Jebaraj 0009-0005-1801-5213

Stephen Parimala Vaijayanthi 0000-0002-4314-5440

Early Pub Date August 31, 2025
Publication Date October 15, 2025
Submission Date May 23, 2025
Acceptance Date June 12, 2025
Published in Issue Year 2025 Volume: 9 Issue: 5

Cite

APA Purushothaman, M., Erkan, S., Loganathan, K., … Jebaraj, P. D. (2025). CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES. Turkish Computational and Theoretical Chemistry, 9(5), 125-137.
AMA Purushothaman M, Erkan S, Loganathan K, Jebaraj PD, Vaijayanthi SP. CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES. Turkish Comp Theo Chem (TC&TC). August 2025;9(5):125-137.
Chicago Purushothaman, Michael, Sultan Erkan, Karuppiah Loganathan, Paul Daniel Jebaraj, and Stephen Parimala Vaijayanthi. “CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES”. Turkish Computational and Theoretical Chemistry 9, no. 5 (August 2025): 125-37.
EndNote Purushothaman M, Erkan S, Loganathan K, Jebaraj PD, Vaijayanthi SP (August 1, 2025) CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES. Turkish Computational and Theoretical Chemistry 9 5 125–137.
IEEE M. Purushothaman, S. Erkan, K. Loganathan, P. D. Jebaraj, and S. P. Vaijayanthi, “CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES”, Turkish Comp Theo Chem (TC&TC), vol. 9, no. 5, pp. 125–137, 2025.
ISNAD Purushothaman, Michael et al. “CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES”. Turkish Computational and Theoretical Chemistry 9/5 (August2025), 125-137.
JAMA Purushothaman M, Erkan S, Loganathan K, Jebaraj PD, Vaijayanthi SP. CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES. Turkish Comp Theo Chem (TC&TC). 2025;9:125–137.
MLA Purushothaman, Michael et al. “CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES”. Turkish Computational and Theoretical Chemistry, vol. 9, no. 5, 2025, pp. 125-37.
Vancouver Purushothaman M, Erkan S, Loganathan K, Jebaraj PD, Vaijayanthi SP. CYANOAMINODIHYDROPYRIDINES: QUANTUM CHEMICAL CALCULATIONS, SPECTRAL ANALYSES AND MOLECULAR DOCKING STUDIES. Turkish Comp Theo Chem (TC&TC). 2025;9(5):125-37.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)