Research Article
BibTex RIS Cite

Potential multitarget inhibitor discovery for breast cancer (TNBC/IBC) from HDAC6 inhibitors: In silico approaches from experimental data

Year 2026, Volume: 10 Issue: 3, 71 - 90

Abstract

The incidence of breast cancer is increasing day by day due to genetic factors as well as lifestyle and diet. TNBC and IBC, which are particularly aggressive types of breast cancer, are among the breast cancer types with the highest metastasis ability. Moreover, due to the relationship between HDAC6 activity and TNBC and IBC breast cancer types, a multi-targeted approach for the discovery of drug molecules can be considered. In the present study, molecules with experimental HDAC6 inhibition and molecules with positive anticancer predictions on breast cancer were identified and 16 molecules with IC50 values lower than 25nM were identified. Then molecular docking studies of the 16 molecules for EGFR, HER2 and HER3 were performed. As a result of the evaluation of all results, it was found that compound C5 (N-[3-[[4-(4-acetamidophenyl)pyrimidin-2-yl]amino]phenyl]-N'-hydroxyhexanediamide) and C7 (N-hydroxy-5-[5-[1-[4-(trifluoromethyl)phenyl]-9H-pyrido[3,4-b]indol-3-yl]-1,3,4-oxadiazol-2-yl]pentanamide) had the best docking results for all target proteins. Molecular dynamics simulation results for compound C5, C7 and standard molecules showed that compound C7 was the best inhibitor candidate. The results suggest that compound C7 have a multi-targeted inhibitory effect and may be a drug candidate molecule for the treatment of TNBC and IBC breast cancer.

References

  • [1] G. Sharma, R. Dave, J. Sanadya, P. Sharma, K.K. Sharma, Various types and management of breast cancer: An overview, Journal of Advanced Pharmaceutical Technology and Research 1 (2010) 109.
  • [2] K. Anuszkiewicz, J. Jankau, M. Kur, What do we know about treating breast-cancer-related lymphedema? Review of the current knowledge about therapeutic options, Breast Cancer 30 (2022) 187–199.
  • [3] R. Costa, A.N. Shah, C.A. Santa-Maria, M.R. Cruz, D. Mahalingam, B.A. Carneiro, Y.K. Chae, M. Cristofanilli, W.J. Gradishar, F.J. Giles, Targeting epidermal growth factor receptor in triple negative breast cancer: New discoveries and practical insights for drug development, Cancer Treatment Reviews 53 (2017) 111–119.
  • [4] C. Yewale, D. Baradia, I. Vhora, S. Patil, A. Misra, Epidermal growth factor receptor targeting in cancer: A review of trends and strategies, Biomaterials 34 (2013) 8690–8707.
  • [5] C. Magkou, L. Nakopoulou, C. Zoubouli, K. Karali, I. Theohari, P. Bakarakos, I. Giannopoulou, Expression of the epidermal growth factor receptor (EGFR) and the phosphorylated EGFR in invasive breast carcinomas, Breast Cancer Research 10 (2008) R49.
  • [6] I. Schlam, S.M. Swain, HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now, NPJ Breast Cancer 7 (2021) 56.
  • [7] R. Mishra, H. Patel, S. Alanazi, L. Yuan, J.T. Garrett, HER3 signaling and targeted therapy in cancer, Oncology Reviews 12 (2018) 355.
  • [8] T. Li, C. Zhang, S. Hassan, X. Liu, F. Song, K. Chen, W. Zhang, J. Yang, Histone deacetylase 6 in cancer, International Journal of Hematologic Oncology 11 (2018) 111.
  • [9] Y. Gao, C.C. Hubbert, T.-P. Yao, The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. Journal of Chemical Biology 285 (2010) 11219–11226.
  • [10] J.P. Dompierre, J.D. Godin, B.C. Charrin, F.P. Cordelières, S.J. King, S. Humbert, F. Saudou, Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. Journal of Neuroscience 27 (2007) 3571–3583.
  • [11] Y. Lissanu Deribe, P. Wild, A. Chandrashaker, J. Curak, M.H.H. Schmidt, Y. Kalaidzidis, N. Milutinovic, I. Kratchmarova, L. Buerkle, M.J. Fetchko, P. Schmidt, S. Kittanakom, K.R. Brown, I. Jurisica, B. Blagoev, M. Zerial, I. Stagljar, I. Dikic, Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Science Signaling 2 (2009) ra84.
  • [12] C. Hubbert, A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.-F. Wang, T.-P. Yao, HDAC6 is a microtubule-associated deacetylase. Nature 417 (2002) 455–458.
  • [13] T. Oba, M. Ono, H. Matoba, T. Uehara, Y. Hasegawa, K. Ito, HDAC6 inhibition enhances the anti-tumor effect of eribulin through tubulin acetylation in triple-negative breast cancer cells, Breast Cancer Research and Treatment 186 (2021) 37–51.
  • [14] C.-W. Chou, M.-S. Wu, W.-C. Huang, C.-C. Chen, HDAC inhibition decreases the expression of EGFR in colorectal cancer cells, PloS One 6 (2011) e18087.
  • [15] T. Hideshima, R. Mazitschek, J. Qi, N. Mimura, J.-C. Tseng, A.L. Kung, J.E. Bradner, K.C. Anderson, HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer, Oncotarget 8 (2017) 80109.
  • [16] A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, J.P. Overington, ChEMBL: A large-scale bioactivity database for drug discovery, Nucleic Acids Research 40 (2011) D1100–D1107.
  • [17] R. Al-Jarf, A.G.C. de Sá, D.E.V. Pires, D.B. Ascher, pdCSM-cancer: Using graph-based signatures to identify small molecules with anticancer properties, Journal of Chemical Information and Modeling 61 (2021) 3314–3322.
  • [18] J. Stamos, M.X. Sliwkowski, C. Eigenbrot, Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor, Journal of Chemical Biology 277 (2002) 46265–46272.
  • [19] K. Aertgeerts, R. Skene, J. Yano, B.-C. Sang, H. Zou, G. Snell, A. Jennings, K. Iwamoto, N. Habuka, A. Hirokawa, T. Ishikawa, T. Tanaka, H. Miki, Y. Ohta, S. Sogabe, Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein, Journal of Chemical Biology 286 (2011) 18756–18765.
  • [20] F. Shi, S.E. Telesco, Y. Liu, R. Radhakrishnan, M.A. Lemmon, ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation, Proceedings of the National Academy of Sciences of the United States of America 107 (2010) 7692–7697.
  • [21] O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry 31 (2009) 455–461.
  • [22] S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, S.H. Bryant, PubChem substance and compound databases, Nucleic Acids Research 44 (2015) D1202–D1213.
  • [23] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society 114 (1992) 10024–10035.
  • [24] P.R. Arantes, M.D. Polêto, C. Pedebos, R. Ligabue-Braun, Making it Rain: Cloud-based molecular simulations for everyone, Journal of Chemical Information and Modeling 61 (2021) 4852–4856.
  • [25] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Computer Physics Communications 91 (1995) 1–41.
  • [26] C. Tian, K. Kasavajhala, K.A. Belfon, L. Raguette, H. Huang, A.N. Migues, J. Bickel, Y. Wang, J. Pincay, Q. Wu, C. Simmerling, ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution, Journal of Chemical Theory and Computation 16 (2019) 528-552.
  • [27] X. He, V.H. Man, W. Yang, T.S. Lee, J.A. Wang, Fast and high-quality charge model for the next generation general AMBER force field. The Journal of Chemical Physics, 153 (2020).
  • [28] C.M. Pfeffer, A.T. Singh, Apoptosis: a target for anticancer therapy, International Journal of Molecular Sciences 19 (2018) 448.
  • [29] N. Shahar, S. Larisch, Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance, Drug Resistance Updates 52 (2020) 100712.
  • [30] G. Lessene, P.E. Czabotar, B.E. Sleebs, K. Zobel, K.N. Lowes, J.M. Adams, J.B. Baell, P.M. Colman, K. Deshayes, W.J. Fairbrother, J.A. Flygare, P. Gibbons, W.J.A. Kersten, S. Kulasegaram, R.M. Moss, J.P. Parisot, B.J. Smith, I.P. Street, H. Yang, D.C.S. Huang, K.G. Watson, Structure-guided design of a selective BCL-XL inhibitor, Nature Chemical Biology 9 (2013) 390–397.
  • [31] B.B. Touré, K. Miller-Moslin, N. Yusuff, L. Perez, M. Doré, C. Joud, W. Michael, L. DiPietro, S. van der Plas, M. McEwan, F. Lenoir, M. Hoe, R. Karki, C. Springer, J. Sullivan, K. Levine, C. Fiorilla, X. Xie, R. Kulathila, K. Herlihy, D. Porter, M. Visser, The role of the acidity of n-heteroaryl sulfonamides as inhibitors of bcl-2 family protein–protein interactions, ACS Medicinal Chemistry Letters 4 (2013) 186–190.
  • [32] N.F. Pelz, Z. Bian, B. Zhao, S. Shaw, J.C. Tarr, J. Belmar, C. Gregg, D.V. Camper, C.M. Goodwin, A.L. Arnold, J.L. Sensintaffar, A. Friberg, O.W. Rossanese, T. Lee, E.T. Olejniczak, S.W. Fesik, Discovery of 2-ındole-acylsulfonamide myeloid cell leukemia 1 (mcl-1) inhibitors using fragment-based methods, Journal of Medicinal Chemistry 59 (2016) 2054–2066.
  • [33] P. Banerjee, E. Kemmler, M. Dunkel, R. Preissner, ProTox 3.0: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Research 52 (2024) W513–W520.
  • [34] P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Research 46 (2018) W257–W263.
  • [35] J. Huszno, E. Nowara, Human epidermal growth factor receptor 2 status in breast cancer: A comparison between borderline positive human epidermal growth factor receptor 2 and strongly positive human epidermal growth factor receptor 2 tumors, Clinical Cancer Investigation Journal 4 (2015) 307-311.
  • [36] G.I. Aldana-Masangkay, K.M. Sakamoto, The role of HDAC6 in cancer, BioMed Research International 2011 (2010) 875824.
  • [37] Z. Zhang, H. Yamashita, T. Toyama, H. Sugiura, Y. Omoto, Y. Ando, K. Mita, M. Hamaguchi, S. Hayashi, H. Iwase, HDAC6 expression is correlated with better survival in breast cancer, Clinical Cancer Research 10 (2004) 6962–6968.
  • [38] N. Garmpis, C. Damaskos, A. Gampri, E. Kalampokas, T. Kalampokas, E. Spartalis, A. Daskalopoulou, S. Valsami, M. Kontos, A. Nonni, K. Kontzoglou, D. Perrea, N. Nikiteas, D. Dimitroulis, Histone deacetylases as new therapeutic targets in triple-negative breast cancer: progress and promises, Cancer Genomics and Proteomics 14 (2017) 299–313.
  • [39] M. Beljkas, A. Ilic, A. Cebzan, B. Radovic, N. Djokovic, D. Ruzic, K. Nikolic, S. Oljacic, Targeting histone deacetylases 6 in dual-target therapy of cancer, Pharmaceutics 15 (2023) 2581.
  • [40] B. Lian, X. Chen, K. Shen, Inhibition of histone deacetylases attenuates tumor progression and improves immunotherapy in breast cancer, Frontiers in Immunology 14 (2023) 1164514.
  • [41] H. Xu, Y. Yu, D. Marciniak, A.K. Rishi, F.H. Sarkar, O. Kucuk, A.P.N. Majumdar, Epidermal growth factor receptor (EGFR)–related protein inhibits multiple members of the EGFR family in colon and breast cancer cells, Molecular Cancer Therapeutics 4 (2005) 435–442.
  • [42] S.S. Tawfik, A. Hamdi, A.R. Ali, A.A. Elgazar, H.W. El-Shafey, A.S. El-Azab, A.H. Bakheit, M.M. Hefnawy, H.A. Ghabbour, A.M. Alaa, S-Alkylated quinazolin-4 (3 H)-ones as dual EGFR/VEGFR-2 kinases inhibitors: design, synthesis, anticancer evaluation and docking study, RSC Advances 14 (2024) 26325-26339.
  • [43] C.A. Ritter, C.L. Arteaga, The epidermal growth factor receptor–tyrosine kinase: A promising therapeutic target in solid tumors, Seminars in Oncology 30 (2003) 3–11.
  • [44] C.-H. Yang, H.-C. Chou, Y.-N. Fu, C.-L. Yeh, H.-W. Cheng, I.-C. Chang, K.-J. Liu, G.-C. Chang, T.-F. Tsai, S.-F. Tsai, H.-P. Liu, Y.-C. Wu, Y.-T. Chen, S.-F. Huang, Y.-R. Chen, EGFR over-expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82, Biochimica et Biophysica Acta - Molecular Basis of Disease 1852 (2015) 1540–1549.
  • [45] L. Repetto, W. Gianni, A.M. Aglianò, P. Gazzaniga, Impact of EGFR expression on colorectal cancer patient prognosis and survival: A response, Annals of Oncology 16 (2005) 1557.
  • [46] K. Rikimaru, K. Tadokoro, T. Yamamoto, S. Enomoto, N. Tsuchida, Gene amplification and overexpression of epidermal growth factor receptor in squamous cell carcinoma of the head and neck, Head and Neck 14 (1992) 8–13.
  • [47] F.G. Barker, M.L. Simmons, S.C. Chang, M.D. Prados, W. Wara, P. Sneed, D. Larson, M.S. Berger, P. Chen, K.D. Aldape, EGFR overexpression and radiation response in glioblastoma multiforme, International Journal of Radiation Oncology, Biology, Physics 48 (2000) 202.
  • [48] Q. Sheng, J. Liu, The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer, British Journal of Cancer 104 (2011) 1241–1245.
  • [49] T. Troiani, E. Martinelli, A. Capasso, F. Morgillo, M. Orditura, F. De Vita, F. Ciardiello, Targeting EGFR in pancreatic cancer treatment, Current Drug Targets 13 (2012) 802–810.
  • [50] A. Okines, D. Cunningham, I. Chau, Targeting the human EGFR family in esophagogastric cancer, Nature Reviews Clinical Oncology 8 (2011) 492–503.
  • [51] I.O. Alanazi, Z. Khan, Understanding EGFR signaling in breast cancer and breast cancer stem cells: Overexpression and therapeutic implications, Asian Pacific Journal of Cancer Prevention 17 (2016) 445–453.
  • [52] C. Tian, S. Huang, Z. Xu, W. Liu, D. Li, M. Liu, C. Zhu, L. Wu, X. Jiang, H. Ding, Q. Zhao, Design, synthesis, and biological evaluation of β-carboline 1,3,4-oxadiazole based hybrids as HDAC inhibitors with potential antitumor effects, Bioorganic and Medicinal Chemistry Letters 64 (2022) 128663.
There are 52 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Article
Authors

Onur Ertik 0000-0001-5437-3513

Early Pub Date October 27, 2025
Publication Date December 3, 2025
Submission Date April 4, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2026 Volume: 10 Issue: 3

Cite

APA Ertik, O. (2025). Potential multitarget inhibitor discovery for breast cancer (TNBC/IBC) from HDAC6 inhibitors: In silico approaches from experimental data. Turkish Computational and Theoretical Chemistry, 10(3), 71-90.
AMA Ertik O. Potential multitarget inhibitor discovery for breast cancer (TNBC/IBC) from HDAC6 inhibitors: In silico approaches from experimental data. Turkish Comp Theo Chem (TC&TC). October 2025;10(3):71-90.
Chicago Ertik, Onur. “Potential Multitarget Inhibitor Discovery for Breast Cancer (TNBC IBC) from HDAC6 Inhibitors: In Silico Approaches from Experimental Data”. Turkish Computational and Theoretical Chemistry 10, no. 3 (October 2025): 71-90.
EndNote Ertik O (October 1, 2025) Potential multitarget inhibitor discovery for breast cancer (TNBC/IBC) from HDAC6 inhibitors: In silico approaches from experimental data. Turkish Computational and Theoretical Chemistry 10 3 71–90.
IEEE O. Ertik, “Potential multitarget inhibitor discovery for breast cancer (TNBC/IBC) from HDAC6 inhibitors: In silico approaches from experimental data”, Turkish Comp Theo Chem (TC&TC), vol. 10, no. 3, pp. 71–90, 2025.
ISNAD Ertik, Onur. “Potential Multitarget Inhibitor Discovery for Breast Cancer (TNBC IBC) from HDAC6 Inhibitors: In Silico Approaches from Experimental Data”. Turkish Computational and Theoretical Chemistry 10/3 (October2025), 71-90.
JAMA Ertik O. Potential multitarget inhibitor discovery for breast cancer (TNBC/IBC) from HDAC6 inhibitors: In silico approaches from experimental data. Turkish Comp Theo Chem (TC&TC). 2025;10:71–90.
MLA Ertik, Onur. “Potential Multitarget Inhibitor Discovery for Breast Cancer (TNBC IBC) from HDAC6 Inhibitors: In Silico Approaches from Experimental Data”. Turkish Computational and Theoretical Chemistry, vol. 10, no. 3, 2025, pp. 71-90.
Vancouver Ertik O. Potential multitarget inhibitor discovery for breast cancer (TNBC/IBC) from HDAC6 inhibitors: In silico approaches from experimental data. Turkish Comp Theo Chem (TC&TC). 2025;10(3):71-90.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)