Research Article
BibTex RIS Cite

Investigation of the role of CYP1A1 and CYP1B1 expressions in obesity susceptibility

Year 2022, Volume: 11 Issue: 3, 69 - 78, 29.09.2022
https://doi.org/10.46810/tdfd.1109600

Abstract

Metabolik işleyiş, etkileri ve neden olduğu hastalıklar açısından daha multidisipliner bir bakış açısıyla anlaşılması gereken obezite, son yıllarda prevalansı ve insidansı artan hastalıklardan biri olarak görülmektedir. Bu hastalığın metabolik yolunda önemli enzim gruplarından biri olan sitokrom p450 (CYP1A1 ve CYP1B1) izozimlerinin rolünün ortaya konulması amaçlanmıştır. 2017-2019 yılları arasında Ankara Keçiören Eğitim ve Araştırma Hastanesi Genel Cerrahi Kliniği'nde obezite tanısı konulan ve bariatrik cerrahi, ksenobiyotik metabolizması uygulanan 152 hastaya immünohistokimya yöntemiyle CYP1A1 ve CYPB1 izoenzimlerinin ekspresyonu araştırılmıştır. CYP1A1 açısından elde edilen bulgular; 152 kişide CYP1A1 ve CYP1B1 immünohistokimya boyama düzeyleri incelenen dokuların %12.7'sinde CYP1A1 ekspresyonu gözlenmezken; %33.3, %32.5 ve %21.4'te zayıf bir CYP1A1 ifadesi gözlenmiştir. Dokuların %71.4'ünde CYP1B1 ekspresyonu görülmezken, dokuların %28.6'sında zayıf ekspresyon izlenmiştir. Hiçbir dokuda orta veya güçlü CYP1B1 ekspresyonu gözlenmemiştir. Kadın hastalardan alınan dokuların ortalama CYP1A1 ve CYP1B1 boyama seviyeleri erkek hastalardan daha yüksek bulunmuştur. Klinik verilerden diyabet parametresi (p<0.05) ile anlamlı olduğu gözlenmiştir. Çalışmamızda elde edilen veriler ışığında obez hastalarda anlamlı CYP1A ve CYP1B1 ekspresyonları gözlenmiş ve detoksifikasyon mekanizması nedeniyle antioksidan metabolizma ve işlevsellik mevcuttur. Obez hastalarda bu enzim düzeyindeki artışın özellikle moleküler yolakta başka çalışmalarla aydınlatılması gerektiği ve benzer çalışmalara yol göstereceği düşünülmektedir.

References

  • [1] Yach D., Stuckler D., Brownell K.D. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat. Med. 2006;12:62–66.
  • [2] Manna, P., & Jain, S. K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metabolic syndrome and related disorders, 2015; 13(10): 423-444.
  • [3] Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 2007; 39(1): 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
  • [4] Djordjević V. B. Free radicals in cell biology. International review of cytology, 2004; 237:57–89. https://doi.org/10.1016/S0074-7696(04)37002-6
  • [5] Wellman, N.S., Friedberg, B. Causes and consequences of adult obesity: health, social and economic impacts in the United States. Asia Pacific Journal of Clinical Nutrition, 2002; 11, S705–S709. https://doi.org/10.1046/j.1440-6047.11.s8.6.x
  • [6] Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation, 2004; 114(12): 1752–1761. https://doi.org/10.1172/JCI21625
  • [7] Hansel, B., Giral, P., Nobecourt, E., Chantepie, S., Bruckert, E., Chapman, M. J., & Kontush, A. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. The Journal of clinical endocrinology and metabolism, 2004; 89(10): 4963–4971. https://doi.org/10.1210/jc.2004-0305
  • [8] Russell, A. P., Gastaldi, G., Bobbioni-Harsch, E., Arboit, P., Gobelet, C., Dériaz, O., Golay, A., Witztum, J. L., & Giacobino, J. P. Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids? FEBS letters, 2003; 551(1-3): 104–106. https://doi.org/10.1016/s0014-5793(03)00875-5
  • [9] Patterson, A. D., Gonzalez, F. J., & Idle, J. R. Xenobiotic metabolism: a view through the metabolometer. Chemical research in toxicology, 2010; 23(5): 851–860. https://doi.org/10.1021/tx100020p
  • [10] Prakash, C., Zuniga, B., Song, C. S., Jiang, S., Cropper, J., Park, S., & Chatterjee, B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. Nuclear receptor research, 2015; 2: 101-178. https://doi.org/10.11131/2015/101178
  • [11] Anttila, S., Hakkola, J., Tuominen, P., Elovaara, E., Husgafvel-Pursiainen, K., Karjalainen, A., Hirvonen, A., & Nurminen, T. Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer research, 2003; 63(24): 8623–8628.
  • [12] Paluzar, H., & Sagiroglu, A. Effects of Organophosphorus and Pyrethroid Pesticides on Antioxidant Enzymes and Reactivation Effects of Pralidoxime: In vitro Studies. Kuwait Journal of Science, 2021; https://doi.org/10.48129/kjs.11847
  • [13] Esposito, K., Ciotola, M., Schisano, B., Misso, L., Giannetti, G., Ceriello, A., & Giugliano, D. Oxidative stress in the metabolic syndrome. Journal of endocrinological investigation, 2006; 29(9): 791–795. https://doi.org/10.1007/BF03347372
  • [14] Pihl, E., Zilmer, K., Kullisaar, T., Kairane, C., Mägi, A., & Zilmer, M. (2006). Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. International journal of obesity (2005), 30(1), 141–146. https://doi.org/10.1038/sj.ijo.0803068
  • [15] Hartwich, J., Góralska, J., Siedlecka, D., Gruca, A., Trzos, M., & Dembinska-Kiec, A. Effect of supplementation with vitamin E and C on plasma hsCRP level and cobalt-albumin binding score as markers of plasma oxidative stress in obesity. Genes & nutrition, 2007; 2(1): 151–154. https://doi.org/10.1007/s12263-007-0041-6
  • [16] Patel, C., Ghanim, H., Ravishankar, S., Sia, C. L., Viswanathan, P., Mohanty, P., & Dandona, P. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. The Journal of clinical endocrinology and metabolism, 2007; 92(11): 4476–4479. https://doi.org/10.1210/jc.2007-0778
  • [17] Amirkhizi, F., Siassi, F., Minaie, S., Djalali, M., Rahimi, A., & Chamari, M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? Arya Atherosclerosis, 2010; 2(4).
  • [18] Ozata, M., Mergen, M., Oktenli, C., Aydin, A., Sanisoglu, S. Y., Bolu, E., Yilmaz, M. I., Sayal, A., Isimer, A., & Ozdemir, I. C. Increased oxidative stress and hypozincemia in male obesity. Clinical biochemistry, 2002; 35(8): 627–631. https://doi.org/10.1016/s0009-9120(02)00363-6
  • [19] Surichan, S., Arroo, R. R., Tsatsakis, A. M., & Androutsopoulos, V. P. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin. Toxicology in vitro : an international journal published in association with BIBRA, 2018; 50: 274–284. https://doi.org/10.1016/j.tiv.2018.04.001
  • [20] Androutsopoulos, V. P., Papakyriakou, A., Vourloumis, D., & Spandidos, D. A. Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorganic & medicinal chemistry, 2011; 19(9): 2842–2849. https://doi.org/10.1016/j.bmc.2011.03.042
Year 2022, Volume: 11 Issue: 3, 69 - 78, 29.09.2022
https://doi.org/10.46810/tdfd.1109600

Abstract

References

  • [1] Yach D., Stuckler D., Brownell K.D. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat. Med. 2006;12:62–66.
  • [2] Manna, P., & Jain, S. K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metabolic syndrome and related disorders, 2015; 13(10): 423-444.
  • [3] Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 2007; 39(1): 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
  • [4] Djordjević V. B. Free radicals in cell biology. International review of cytology, 2004; 237:57–89. https://doi.org/10.1016/S0074-7696(04)37002-6
  • [5] Wellman, N.S., Friedberg, B. Causes and consequences of adult obesity: health, social and economic impacts in the United States. Asia Pacific Journal of Clinical Nutrition, 2002; 11, S705–S709. https://doi.org/10.1046/j.1440-6047.11.s8.6.x
  • [6] Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation, 2004; 114(12): 1752–1761. https://doi.org/10.1172/JCI21625
  • [7] Hansel, B., Giral, P., Nobecourt, E., Chantepie, S., Bruckert, E., Chapman, M. J., & Kontush, A. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. The Journal of clinical endocrinology and metabolism, 2004; 89(10): 4963–4971. https://doi.org/10.1210/jc.2004-0305
  • [8] Russell, A. P., Gastaldi, G., Bobbioni-Harsch, E., Arboit, P., Gobelet, C., Dériaz, O., Golay, A., Witztum, J. L., & Giacobino, J. P. Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids? FEBS letters, 2003; 551(1-3): 104–106. https://doi.org/10.1016/s0014-5793(03)00875-5
  • [9] Patterson, A. D., Gonzalez, F. J., & Idle, J. R. Xenobiotic metabolism: a view through the metabolometer. Chemical research in toxicology, 2010; 23(5): 851–860. https://doi.org/10.1021/tx100020p
  • [10] Prakash, C., Zuniga, B., Song, C. S., Jiang, S., Cropper, J., Park, S., & Chatterjee, B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. Nuclear receptor research, 2015; 2: 101-178. https://doi.org/10.11131/2015/101178
  • [11] Anttila, S., Hakkola, J., Tuominen, P., Elovaara, E., Husgafvel-Pursiainen, K., Karjalainen, A., Hirvonen, A., & Nurminen, T. Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer research, 2003; 63(24): 8623–8628.
  • [12] Paluzar, H., & Sagiroglu, A. Effects of Organophosphorus and Pyrethroid Pesticides on Antioxidant Enzymes and Reactivation Effects of Pralidoxime: In vitro Studies. Kuwait Journal of Science, 2021; https://doi.org/10.48129/kjs.11847
  • [13] Esposito, K., Ciotola, M., Schisano, B., Misso, L., Giannetti, G., Ceriello, A., & Giugliano, D. Oxidative stress in the metabolic syndrome. Journal of endocrinological investigation, 2006; 29(9): 791–795. https://doi.org/10.1007/BF03347372
  • [14] Pihl, E., Zilmer, K., Kullisaar, T., Kairane, C., Mägi, A., & Zilmer, M. (2006). Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. International journal of obesity (2005), 30(1), 141–146. https://doi.org/10.1038/sj.ijo.0803068
  • [15] Hartwich, J., Góralska, J., Siedlecka, D., Gruca, A., Trzos, M., & Dembinska-Kiec, A. Effect of supplementation with vitamin E and C on plasma hsCRP level and cobalt-albumin binding score as markers of plasma oxidative stress in obesity. Genes & nutrition, 2007; 2(1): 151–154. https://doi.org/10.1007/s12263-007-0041-6
  • [16] Patel, C., Ghanim, H., Ravishankar, S., Sia, C. L., Viswanathan, P., Mohanty, P., & Dandona, P. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. The Journal of clinical endocrinology and metabolism, 2007; 92(11): 4476–4479. https://doi.org/10.1210/jc.2007-0778
  • [17] Amirkhizi, F., Siassi, F., Minaie, S., Djalali, M., Rahimi, A., & Chamari, M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? Arya Atherosclerosis, 2010; 2(4).
  • [18] Ozata, M., Mergen, M., Oktenli, C., Aydin, A., Sanisoglu, S. Y., Bolu, E., Yilmaz, M. I., Sayal, A., Isimer, A., & Ozdemir, I. C. Increased oxidative stress and hypozincemia in male obesity. Clinical biochemistry, 2002; 35(8): 627–631. https://doi.org/10.1016/s0009-9120(02)00363-6
  • [19] Surichan, S., Arroo, R. R., Tsatsakis, A. M., & Androutsopoulos, V. P. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin. Toxicology in vitro : an international journal published in association with BIBRA, 2018; 50: 274–284. https://doi.org/10.1016/j.tiv.2018.04.001
  • [20] Androutsopoulos, V. P., Papakyriakou, A., Vourloumis, D., & Spandidos, D. A. Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorganic & medicinal chemistry, 2011; 19(9): 2842–2849. https://doi.org/10.1016/j.bmc.2011.03.042
There are 20 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Fatih Polat 0000-0001-5969-9811

Hakan Buluş 0000-0001-7439-8099

Pınar Kaygın 0000-0003-0127-1753

Onur Dirican 0000-0003-0511-6611

Gülçin Güler Şimşek 0000-0001-7710-4631

Sezen Yılmaz Sarıaltın 0000-0002-8387-4146

Fatıma Nurdan Gürbüz 0000-0001-5649-954X

Can Yılmaz 0000-0002-0028-6614

Serpil Oğuztüzün 0000-0002-5892-3735

Publication Date September 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Polat, F., Buluş, H., Kaygın, P., Dirican, O., et al. (2022). Investigation of the role of CYP1A1 and CYP1B1 expressions in obesity susceptibility. Türk Doğa Ve Fen Dergisi, 11(3), 69-78. https://doi.org/10.46810/tdfd.1109600
AMA Polat F, Buluş H, Kaygın P, Dirican O, Güler Şimşek G, Sarıaltın SY, Gürbüz FN, Yılmaz C, Oğuztüzün S. Investigation of the role of CYP1A1 and CYP1B1 expressions in obesity susceptibility. TJNS. September 2022;11(3):69-78. doi:10.46810/tdfd.1109600
Chicago Polat, Fatih, Hakan Buluş, Pınar Kaygın, Onur Dirican, Gülçin Güler Şimşek, Sezen Yılmaz Sarıaltın, Fatıma Nurdan Gürbüz, Can Yılmaz, and Serpil Oğuztüzün. “Investigation of the Role of CYP1A1 and CYP1B1 Expressions in Obesity Susceptibility”. Türk Doğa Ve Fen Dergisi 11, no. 3 (September 2022): 69-78. https://doi.org/10.46810/tdfd.1109600.
EndNote Polat F, Buluş H, Kaygın P, Dirican O, Güler Şimşek G, Sarıaltın SY, Gürbüz FN, Yılmaz C, Oğuztüzün S (September 1, 2022) Investigation of the role of CYP1A1 and CYP1B1 expressions in obesity susceptibility. Türk Doğa ve Fen Dergisi 11 3 69–78.
IEEE F. Polat, “Investigation of the role of CYP1A1 and CYP1B1 expressions in obesity susceptibility”, TJNS, vol. 11, no. 3, pp. 69–78, 2022, doi: 10.46810/tdfd.1109600.
ISNAD Polat, Fatih et al. “Investigation of the Role of CYP1A1 and CYP1B1 Expressions in Obesity Susceptibility”. Türk Doğa ve Fen Dergisi 11/3 (September 2022), 69-78. https://doi.org/10.46810/tdfd.1109600.
JAMA Polat F, Buluş H, Kaygın P, Dirican O, Güler Şimşek G, Sarıaltın SY, Gürbüz FN, Yılmaz C, Oğuztüzün S. Investigation of the role of CYP1A1 and CYP1B1 expressions in obesity susceptibility. TJNS. 2022;11:69–78.
MLA Polat, Fatih et al. “Investigation of the Role of CYP1A1 and CYP1B1 Expressions in Obesity Susceptibility”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 3, 2022, pp. 69-78, doi:10.46810/tdfd.1109600.
Vancouver Polat F, Buluş H, Kaygın P, Dirican O, Güler Şimşek G, Sarıaltın SY, Gürbüz FN, Yılmaz C, Oğuztüzün S. Investigation of the role of CYP1A1 and CYP1B1 expressions in obesity susceptibility. TJNS. 2022;11(3):69-78.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.