Research Article
BibTex RIS Cite

Superconductivity in Brain

Year 2024, Volume: 13 Issue: 2, 121 - 127, 28.06.2024
https://doi.org/10.46810/tdfd.1349292

Abstract

Bu makalede beyindeki süperiletkenlik olgusu, süperiletkenliğin bazı özelliklerinden temel alınarak incelenmiştir. Hidrojen bazlı bileşiklerin ortam sıcaklığı ve basıncında süperiletken olma olasılığı, süperiletkenlik ile yüksek oranda su yani hidrojen içeren canlı organizmalar arasında bir analoji kurulmasına olanak sağlamıştır. Bu nedenle beyindeki nöronlarda bulunan mikrotübül yapılarında meydana gelen süperiletkenlik olgusu ayrıntılı olarak incelenmiş ve böylece beynin kuantum mekaniksel özellikleri açıklanmaya çalışılmıştır. Bilgisayar belleği gibi işlev görme davranışı, deoksiribonükleik asit hasarını onarma rolü, beyne kuantum mekaniksel davranış kazandırma özelliği nedeniyle; mikrotübüller çok ilginç organellerdir. Bu bağlamda süperiletkenlik, kuantum dolaşıklığı ve bozonik durum gibi olağanüstü özellikleriyle uzun süreli hafıza, empati ve bilinç açısından insana yol gösterici olabilir

Thanks

I would like to thank Prof.Dr. Ülker Onbaşlı for her unforgettable conversations and guidance since the first day I met her.

References

  • Onnes, H.K. The Superconductivity of Mercury. Comm. Phys. Lab. Univ., Leiden, (1911); 122-124.
  • Hirsch J.E. The origin of the Meissner effect in new and old superconductors. Phys. Scr, (2012); 85, 035704.
  • Kittel C. Introduction to Solid State Physics, John Wiley & Sons, Inc., New York (1996).
  • Josephson B.D. Possible New Effects in Superconducting Tunneling. Phys. Lett. (1962); 1/7, 251-253.
  • Adhikari S.K., Casas M., Puente A., Rigo A., Fortes M., Solís M.A, et al., Superconductivity as a Bose-Einstein condensation?, Physica C. (2000); 341-348, 233-236.
  • Casas M., de Llano M., Puente A., Rigo A., Solís M.A. Two-dimensional Bose Einstein condensation in cuprate superconductors. Solid State Commun, (2002); 123/3, 101-106.
  • Onbaşlı Ü., Güven Özdemir Z. Superconductors and Quantum Gravity. In: Luiz A. M. editor. Superconductor, Sciyo Company Press, India, 2010. pp. 291-310.
  • Aslan Çataltepe Ö. Mercury cuprates bring symmetry breaking of the universe to laboratory. In: Onbaşlı Ü. editor. Lifetime of the Waves from Nano to Solitons in My Life, Transworld Research Network, Kerala, India. 2012. pp 215-243.
  • Onbaşlı Ü.: Towards the logic of everything. In: Onbaşlı Ü. editor. Lifetime of the Waves from Nano to Solitons in My Life, Transworld Research Network, Kerala, India, 2012.
  • Ketterson, J.B., Song, S.N. Superconductivity, Cambridge University Press, 1999.
  • Cooper L.N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 1956; 104, 4.
  • Bardeen J., Cooper L.N., Schrieffer J.R. Theory of Superconductivity, Phys. Rev. 1957; 108, 5.
  • Bussmann-Holder A., Keller H. High-temperature superconductors: underlying physics and applications. Z Naturforsch. Pt. B. 2019; 75,1-13.
  • de Llano M., Sevilla F. J. Tapia S.: Cooper Pairs As Boson. Int. J. M. P. B. 2006; 20/20, 2931-2939.
  • Özdemir Z. G., Aslan Ö., Onbaslı Ü. Terahertz oscillations in mercury cuprate superconductors. Pramana - J Phys. 2009; 73/4, 755-763.
  • Bardeen J. Theory of the Meissner Effect in Superconductors. Phys. Rev. 1955; 97, 1724.
  • Maruf H.M.A.R., Islam M.R., Chowdhury F.U.Z. Analogy Between Ac Josephson Junction Effects and Optical Phenomena In Superconductors. J. Bangladesh Soc. Physiol. 2018; 23&24, 105-113
  • Tinkham, M. Introduction to Superconductivity. McGraww-Hill Inc.,Singapore, Japan, 1996.
  • Langenberg D.N., Scalapino D.J., Taylor B.N., Eck R.E. Investigation of Microwave Radiation Emitted By Josephson Junction. Phys. Rev. Lett. 1965; 15/7 294-297.
  • Belli F., Novoa T., Contreras-García J., Errea I. Strong correlation between electronic bonding network and critical temperature in hydrogen based superconductors. Nat. Commun. 2021; 12, 538.
  • Zhang Z., Cui T., Hutcheon M. J., Shipley A. M., Song H., Du M., et al. Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure. Phys. Rev. Lett. 2022; 128/ 047001.
  • Mikheenko, P. Possible superconductivity in the brain, J. Supercond. Nov. Magn. 2019; 32, 1121–1134.
  • Little W.A. Possibility of Synthesizing an Organic Superconductor. Phys. Rev. 1964; 134, A1416.
  • Messori C. Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial Water in Living Systems. OALib Journal, 2019; 6/e5435.
  • Mikheenko P. Nano Superconductivity and Quantum Processing of Information in Living Organisms Mikrotubulus, IEEE International Conference on Nanomaterials: Applications & Properties (NAP-2020), Sumy, Ukraine, 2020.
  • Drozdov A.P., Eremets M.I., Troyan, I., Ksenofontov A.V. , Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015; 525, 73.
  • Kresin, V.Z. Paths to Room-Temperature Superconductivity. J. Supercond. Nov. Magn. 2018; 31, 611-617.
  • Marezio M., Licci F., Gauzzi A. The Effect of Chemical Pressure on Tc of Layered Cuprate Superconductors: Advances. In: Koshizuka N., Tajima S. editors. Advances in Superconductivity XI, Springer, Tokyo, 1999. pp 31–36.
  • Demel A., Wolf M., Poets C.F., Franz A.R.: Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study. BMC Pediatr. 2014; 14:206.
  • Halpern, E.H., Wolf, A.A. Speculations of Superconductivity in Biological and Organic Systems. In: Timmerhaus, K.D., editors. Advances in Cryogenic Engineering. vol 17. Springer, Boston, MA. 1972. pp 109–115.
  • Sanchez-Castro N., Palomino-Ovando M.A., Singh P., Sahu S., Toledo-Solano M., Faubert J. et al. Microtubules as One-Dimensional Crystals: Is Crystal-Like Structure the Key to the Information Processing of Living Systems?. Crystals. 2021; 11(3), 318.
  • Toomey E., Segall K., Berggren K. K. Design of a Power Efficient Artificial Neuron Using Superconducting Nanowires. Front. Neurosci. 2019; 13/933.
  • Christensen D.V., Dittmann R., Linares-Barranco B., Sebastian A., Gallo M.L., Redaelli A., Slesazeck S. et al,: Roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501. (2022)
  • Schuman C.D., Kulkarni S.R., Parsa M., Mitchell J.P., Date P., Kay B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022; 2, 10–19.
  • Schneider M., Toomey E., Rowlands G., Shainline J., Tschirhart P., Segall K.: SuperMind: a survey of the potential of superconducting electronics for neuromorphic computing. Supercond. Sci. Technol. 2022; 35/ 5.
  • Shainline J.M., Buckley S.M., McCaughan A.N., Chiles J.T., Salim A.J., Castellanos-Beltran M. et al. Superconducting optoelectronic loop neurons. J. Appl. Phys. 2019; 126, 044902.
  • Georgiev D.D. [Internet]. 2004 Bose-Einstein condensation of tunneling photons in the brain cortex as a mechanism of conscious action. [cited 202309 June]. Avaliable from https://www.researchgate.net/profile/Jerzy-Achimowicz/publication/259782781_tunnellingINtheBRAIN/links/00b4952dde3816aa59000000/tunnellingINtheBRAIN.pdf.
  • Alexiou, A., Rekkas, J. Superconductivity in Human Body; Myth or Necessity. In: Vlamos, P., Alexiou, A. editors. GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 822. Springer, Cham. 2015; 53–58.
  • Dieks D., Lubberdink A. Identical Quantum Particles as Distinguishable Objects, J. Gen. Philos. Sci. 2022; 53:259–274
  • Aspect A., Clauser J.F., Zeilinger A. [Internet] For experiments with entangled photons, establishing the violation of bell inequalities and pioneering quantum information science, 2022 [cited 2023 25 April]. Available from https://www.nobelprize.org/uploads/2022/10/advanced-physicsprize2022-2.pdf .
  • Jarnestad J. [Internet] 2022 [cited 2023 June 26] Available from: https://www.nobelprize.org/uploads/2022/10/press-physics2022-figure1.pdf .
  • Acharya S., Shuklav S. Mirror neurons: enigma of the metaphysical modular brain. J Nat Sci Biol Med. 2012; 3/2, 118–124.
  • Everth T., Gurney L. Emergent Realities: Diffracting Barad within a quantum-realist ontology of matter and politics. Euro. Jnl. Phil. Sci. 2022; 12, 51.
  • Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E. 2000; 61(4), 4194–4206.
  • Koons R.C. Powers ontology and the quantum revolution. Eur. J. Philos. Sci. 2021; 11/ 14.
  • Ehret G., Romand R. Awareness and consciousness in humans and animals–neural and behavioral correlates in an evolutionary perspective. Front. Syst. Neurosci. 2022; 16, 941534.
  • Das T. Origin and storage of consciousness. NeuroQuantology, 2015; 13/1, 108-110.
  • Baas P.W., Rao A. N., Matamoros A. J., Leo L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken), 2016; 73(9), 442–460.
  • Kim J. M.: Molecular Link between DNA Damage Response and Microtubule Dynamics. Int J Mol Sci. 2022; 23(13), 6986.
Year 2024, Volume: 13 Issue: 2, 121 - 127, 28.06.2024
https://doi.org/10.46810/tdfd.1349292

Abstract

References

  • Onnes, H.K. The Superconductivity of Mercury. Comm. Phys. Lab. Univ., Leiden, (1911); 122-124.
  • Hirsch J.E. The origin of the Meissner effect in new and old superconductors. Phys. Scr, (2012); 85, 035704.
  • Kittel C. Introduction to Solid State Physics, John Wiley & Sons, Inc., New York (1996).
  • Josephson B.D. Possible New Effects in Superconducting Tunneling. Phys. Lett. (1962); 1/7, 251-253.
  • Adhikari S.K., Casas M., Puente A., Rigo A., Fortes M., Solís M.A, et al., Superconductivity as a Bose-Einstein condensation?, Physica C. (2000); 341-348, 233-236.
  • Casas M., de Llano M., Puente A., Rigo A., Solís M.A. Two-dimensional Bose Einstein condensation in cuprate superconductors. Solid State Commun, (2002); 123/3, 101-106.
  • Onbaşlı Ü., Güven Özdemir Z. Superconductors and Quantum Gravity. In: Luiz A. M. editor. Superconductor, Sciyo Company Press, India, 2010. pp. 291-310.
  • Aslan Çataltepe Ö. Mercury cuprates bring symmetry breaking of the universe to laboratory. In: Onbaşlı Ü. editor. Lifetime of the Waves from Nano to Solitons in My Life, Transworld Research Network, Kerala, India. 2012. pp 215-243.
  • Onbaşlı Ü.: Towards the logic of everything. In: Onbaşlı Ü. editor. Lifetime of the Waves from Nano to Solitons in My Life, Transworld Research Network, Kerala, India, 2012.
  • Ketterson, J.B., Song, S.N. Superconductivity, Cambridge University Press, 1999.
  • Cooper L.N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 1956; 104, 4.
  • Bardeen J., Cooper L.N., Schrieffer J.R. Theory of Superconductivity, Phys. Rev. 1957; 108, 5.
  • Bussmann-Holder A., Keller H. High-temperature superconductors: underlying physics and applications. Z Naturforsch. Pt. B. 2019; 75,1-13.
  • de Llano M., Sevilla F. J. Tapia S.: Cooper Pairs As Boson. Int. J. M. P. B. 2006; 20/20, 2931-2939.
  • Özdemir Z. G., Aslan Ö., Onbaslı Ü. Terahertz oscillations in mercury cuprate superconductors. Pramana - J Phys. 2009; 73/4, 755-763.
  • Bardeen J. Theory of the Meissner Effect in Superconductors. Phys. Rev. 1955; 97, 1724.
  • Maruf H.M.A.R., Islam M.R., Chowdhury F.U.Z. Analogy Between Ac Josephson Junction Effects and Optical Phenomena In Superconductors. J. Bangladesh Soc. Physiol. 2018; 23&24, 105-113
  • Tinkham, M. Introduction to Superconductivity. McGraww-Hill Inc.,Singapore, Japan, 1996.
  • Langenberg D.N., Scalapino D.J., Taylor B.N., Eck R.E. Investigation of Microwave Radiation Emitted By Josephson Junction. Phys. Rev. Lett. 1965; 15/7 294-297.
  • Belli F., Novoa T., Contreras-García J., Errea I. Strong correlation between electronic bonding network and critical temperature in hydrogen based superconductors. Nat. Commun. 2021; 12, 538.
  • Zhang Z., Cui T., Hutcheon M. J., Shipley A. M., Song H., Du M., et al. Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure. Phys. Rev. Lett. 2022; 128/ 047001.
  • Mikheenko, P. Possible superconductivity in the brain, J. Supercond. Nov. Magn. 2019; 32, 1121–1134.
  • Little W.A. Possibility of Synthesizing an Organic Superconductor. Phys. Rev. 1964; 134, A1416.
  • Messori C. Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial Water in Living Systems. OALib Journal, 2019; 6/e5435.
  • Mikheenko P. Nano Superconductivity and Quantum Processing of Information in Living Organisms Mikrotubulus, IEEE International Conference on Nanomaterials: Applications & Properties (NAP-2020), Sumy, Ukraine, 2020.
  • Drozdov A.P., Eremets M.I., Troyan, I., Ksenofontov A.V. , Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015; 525, 73.
  • Kresin, V.Z. Paths to Room-Temperature Superconductivity. J. Supercond. Nov. Magn. 2018; 31, 611-617.
  • Marezio M., Licci F., Gauzzi A. The Effect of Chemical Pressure on Tc of Layered Cuprate Superconductors: Advances. In: Koshizuka N., Tajima S. editors. Advances in Superconductivity XI, Springer, Tokyo, 1999. pp 31–36.
  • Demel A., Wolf M., Poets C.F., Franz A.R.: Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study. BMC Pediatr. 2014; 14:206.
  • Halpern, E.H., Wolf, A.A. Speculations of Superconductivity in Biological and Organic Systems. In: Timmerhaus, K.D., editors. Advances in Cryogenic Engineering. vol 17. Springer, Boston, MA. 1972. pp 109–115.
  • Sanchez-Castro N., Palomino-Ovando M.A., Singh P., Sahu S., Toledo-Solano M., Faubert J. et al. Microtubules as One-Dimensional Crystals: Is Crystal-Like Structure the Key to the Information Processing of Living Systems?. Crystals. 2021; 11(3), 318.
  • Toomey E., Segall K., Berggren K. K. Design of a Power Efficient Artificial Neuron Using Superconducting Nanowires. Front. Neurosci. 2019; 13/933.
  • Christensen D.V., Dittmann R., Linares-Barranco B., Sebastian A., Gallo M.L., Redaelli A., Slesazeck S. et al,: Roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501. (2022)
  • Schuman C.D., Kulkarni S.R., Parsa M., Mitchell J.P., Date P., Kay B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022; 2, 10–19.
  • Schneider M., Toomey E., Rowlands G., Shainline J., Tschirhart P., Segall K.: SuperMind: a survey of the potential of superconducting electronics for neuromorphic computing. Supercond. Sci. Technol. 2022; 35/ 5.
  • Shainline J.M., Buckley S.M., McCaughan A.N., Chiles J.T., Salim A.J., Castellanos-Beltran M. et al. Superconducting optoelectronic loop neurons. J. Appl. Phys. 2019; 126, 044902.
  • Georgiev D.D. [Internet]. 2004 Bose-Einstein condensation of tunneling photons in the brain cortex as a mechanism of conscious action. [cited 202309 June]. Avaliable from https://www.researchgate.net/profile/Jerzy-Achimowicz/publication/259782781_tunnellingINtheBRAIN/links/00b4952dde3816aa59000000/tunnellingINtheBRAIN.pdf.
  • Alexiou, A., Rekkas, J. Superconductivity in Human Body; Myth or Necessity. In: Vlamos, P., Alexiou, A. editors. GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 822. Springer, Cham. 2015; 53–58.
  • Dieks D., Lubberdink A. Identical Quantum Particles as Distinguishable Objects, J. Gen. Philos. Sci. 2022; 53:259–274
  • Aspect A., Clauser J.F., Zeilinger A. [Internet] For experiments with entangled photons, establishing the violation of bell inequalities and pioneering quantum information science, 2022 [cited 2023 25 April]. Available from https://www.nobelprize.org/uploads/2022/10/advanced-physicsprize2022-2.pdf .
  • Jarnestad J. [Internet] 2022 [cited 2023 June 26] Available from: https://www.nobelprize.org/uploads/2022/10/press-physics2022-figure1.pdf .
  • Acharya S., Shuklav S. Mirror neurons: enigma of the metaphysical modular brain. J Nat Sci Biol Med. 2012; 3/2, 118–124.
  • Everth T., Gurney L. Emergent Realities: Diffracting Barad within a quantum-realist ontology of matter and politics. Euro. Jnl. Phil. Sci. 2022; 12, 51.
  • Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E. 2000; 61(4), 4194–4206.
  • Koons R.C. Powers ontology and the quantum revolution. Eur. J. Philos. Sci. 2021; 11/ 14.
  • Ehret G., Romand R. Awareness and consciousness in humans and animals–neural and behavioral correlates in an evolutionary perspective. Front. Syst. Neurosci. 2022; 16, 941534.
  • Das T. Origin and storage of consciousness. NeuroQuantology, 2015; 13/1, 108-110.
  • Baas P.W., Rao A. N., Matamoros A. J., Leo L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken), 2016; 73(9), 442–460.
  • Kim J. M.: Molecular Link between DNA Damage Response and Microtubule Dynamics. Int J Mol Sci. 2022; 23(13), 6986.
There are 49 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Özden Aslan Çataltepe 0000-0003-4520-9839

Early Pub Date June 28, 2024
Publication Date June 28, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Aslan Çataltepe, Ö. (2024). Superconductivity in Brain. Türk Doğa Ve Fen Dergisi, 13(2), 121-127. https://doi.org/10.46810/tdfd.1349292
AMA Aslan Çataltepe Ö. Superconductivity in Brain. TJNS. June 2024;13(2):121-127. doi:10.46810/tdfd.1349292
Chicago Aslan Çataltepe, Özden. “Superconductivity in Brain”. Türk Doğa Ve Fen Dergisi 13, no. 2 (June 2024): 121-27. https://doi.org/10.46810/tdfd.1349292.
EndNote Aslan Çataltepe Ö (June 1, 2024) Superconductivity in Brain. Türk Doğa ve Fen Dergisi 13 2 121–127.
IEEE Ö. Aslan Çataltepe, “Superconductivity in Brain”, TJNS, vol. 13, no. 2, pp. 121–127, 2024, doi: 10.46810/tdfd.1349292.
ISNAD Aslan Çataltepe, Özden. “Superconductivity in Brain”. Türk Doğa ve Fen Dergisi 13/2 (June 2024), 121-127. https://doi.org/10.46810/tdfd.1349292.
JAMA Aslan Çataltepe Ö. Superconductivity in Brain. TJNS. 2024;13:121–127.
MLA Aslan Çataltepe, Özden. “Superconductivity in Brain”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 2, 2024, pp. 121-7, doi:10.46810/tdfd.1349292.
Vancouver Aslan Çataltepe Ö. Superconductivity in Brain. TJNS. 2024;13(2):121-7.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.