Research Article
BibTex RIS Cite

Flow Rate along the Length of the Swirling Vortex Axis at an Intake

Year 2021, , 11013 - 11027, 01.07.2021
https://doi.org/10.18400/tekderg.593595

Abstract

In this study, the characteristics of the flow in the region of swirling vortex are examined. The potential flow model based on the summing infinite number of spherical sinks along the vortex core is introduced to predict the flow field and the flow rate along the vortex axis. The flow towards the swirling vortex core has considerable effects on the radial velocity distribution within the ambient fluid flow region near the intake. The agreement between available test data relating to the radial velocity and the method introduced in this study is found to be satisfactory.

References

  • [1] Denny, D.F., An experimental study of air-entraining vortices in pump sumps. Proceedings of Institution of Mechanical Engineering, 170(2), 106116, 1956.
  • [2] Anwar, H.O., Weller, J.A., Amphlett, M.B., Similarity of free vortex at horizontal intake. J. Hydraul. Res. 16(2), 95106, 1978.
  • [3] Hecker, G.E., Fundamentals of vortex intake flow. In: Knauss, J (ed) Swirling Flow Problems at Intakes, pp. 13-38. A.A. Balkema, Rotterdam, 1987.
  • [4] Taştan, K., Yıldırım, N., Effects of Froude, Reynolds and Weber numbers on an air-entraining vortex. J. Hydraul. Res. 52(3), 421-425, 2014.
  • [5] Kocabaş, F., Yıldırım, N., Effect of circulation on critical submergence of an intake pipe. J. Hydraul. Res. 40(6), 741-752, 2002.
  • [6] Yang, J., Liu, T., Bottacin-Busolin, A, Lin C., Effects of intake-entrance profiles on free-surface vortices. J. Hydraul. Res. 52(4), 523-531, 2014.
  • [7] Naderi, V., Farsadizadeh, D., Dalir, A.H., Arvanaghi, H., Effect of using vertical plates on vertical intake on discharge coefficient. Arab. J. Sci. Eng. 39(12), 8627-8633, 2014.
  • [8] Sun, H., Liu, Y., Theoretical and experimental study on the vortex at hydraulic intakes. J. Hydraul. Res. 53(6), 787-796, 2015.
  • [9] Odgaard, A.J., Free-surface air-core vortex. J. Hydraul. Eng. 112(7), 610-620, 1986.
  • [10] Suerich-Gulick, F., Gaskin, S.J., Villeneuve, M., Parkinson, E., Characteristics of free surface vortices at low-head hydropower intakes. J. Hydraul. Eng. 140(3), 291-299, 2014.
  • [11] Vatistas, G.H., Lin, S., Li, P.M., A similar profile for the tangential velocity in vortex chambers. Exp. Fluids, 6 135-137, 1988.
  • [12] Anwar, H.O., Flow in a free vortex. Water Power, 4, 153-161, 1965.
  • [13] Vatistas, G.H., Kozel, V., Mih, W.C., A simpler model for concentrated vortices. Exp. Fluids, 11(1), 73-76, 1991.
  • [14] Taştan, K., Yıldırım, N., Effects of intake geometry on the occurrence of a free-surface vortex. J. Hydraul. Eng. 144(4), 04018009-1-04018009-11, 2018.
  • [15] Suerich-Gulick, F., Gaskin, S J., Villeneuve, M., Parkinson, E., Free surface intake vortices: Theoretical model and measurements J. Hydraul. Res. 52(4), 502-512, 2014.
  • [16] Quick, M.C., Efficiency of air-entraining vortex formation of water intake. Journal of the Hydraulics Division, 96(7), 1403-1415, 1970.

Flow Rate along the Length of the Swirling Vortex Axis at an Intake

Year 2021, , 11013 - 11027, 01.07.2021
https://doi.org/10.18400/tekderg.593595

Abstract

In this study, the characteristics of the flow in the region of swirling vortex are examined. The potential flow model based on the summing infinite number of spherical sinks along the vortex core is introduced to predict the flow field and the flow rate along the vortex axis. The flow towards the swirling vortex core has considerable effects on the radial velocity distribution within the ambient fluid flow region near the intake. The agreement between available test data relating to the radial velocity and the method introduced in this study is found to be satisfactory.

References

  • [1] Denny, D.F., An experimental study of air-entraining vortices in pump sumps. Proceedings of Institution of Mechanical Engineering, 170(2), 106116, 1956.
  • [2] Anwar, H.O., Weller, J.A., Amphlett, M.B., Similarity of free vortex at horizontal intake. J. Hydraul. Res. 16(2), 95106, 1978.
  • [3] Hecker, G.E., Fundamentals of vortex intake flow. In: Knauss, J (ed) Swirling Flow Problems at Intakes, pp. 13-38. A.A. Balkema, Rotterdam, 1987.
  • [4] Taştan, K., Yıldırım, N., Effects of Froude, Reynolds and Weber numbers on an air-entraining vortex. J. Hydraul. Res. 52(3), 421-425, 2014.
  • [5] Kocabaş, F., Yıldırım, N., Effect of circulation on critical submergence of an intake pipe. J. Hydraul. Res. 40(6), 741-752, 2002.
  • [6] Yang, J., Liu, T., Bottacin-Busolin, A, Lin C., Effects of intake-entrance profiles on free-surface vortices. J. Hydraul. Res. 52(4), 523-531, 2014.
  • [7] Naderi, V., Farsadizadeh, D., Dalir, A.H., Arvanaghi, H., Effect of using vertical plates on vertical intake on discharge coefficient. Arab. J. Sci. Eng. 39(12), 8627-8633, 2014.
  • [8] Sun, H., Liu, Y., Theoretical and experimental study on the vortex at hydraulic intakes. J. Hydraul. Res. 53(6), 787-796, 2015.
  • [9] Odgaard, A.J., Free-surface air-core vortex. J. Hydraul. Eng. 112(7), 610-620, 1986.
  • [10] Suerich-Gulick, F., Gaskin, S.J., Villeneuve, M., Parkinson, E., Characteristics of free surface vortices at low-head hydropower intakes. J. Hydraul. Eng. 140(3), 291-299, 2014.
  • [11] Vatistas, G.H., Lin, S., Li, P.M., A similar profile for the tangential velocity in vortex chambers. Exp. Fluids, 6 135-137, 1988.
  • [12] Anwar, H.O., Flow in a free vortex. Water Power, 4, 153-161, 1965.
  • [13] Vatistas, G.H., Kozel, V., Mih, W.C., A simpler model for concentrated vortices. Exp. Fluids, 11(1), 73-76, 1991.
  • [14] Taştan, K., Yıldırım, N., Effects of intake geometry on the occurrence of a free-surface vortex. J. Hydraul. Eng. 144(4), 04018009-1-04018009-11, 2018.
  • [15] Suerich-Gulick, F., Gaskin, S J., Villeneuve, M., Parkinson, E., Free surface intake vortices: Theoretical model and measurements J. Hydraul. Res. 52(4), 502-512, 2014.
  • [16] Quick, M.C., Efficiency of air-entraining vortex formation of water intake. Journal of the Hydraulics Division, 96(7), 1403-1415, 1970.
There are 16 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

Kerem Taştan 0000-0003-1747-2496

Nevzat Yıldırım 0000-0002-0985-8084

Publication Date July 1, 2021
Submission Date July 18, 2019
Published in Issue Year 2021

Cite

APA Taştan, K., & Yıldırım, N. (2021). Flow Rate along the Length of the Swirling Vortex Axis at an Intake. Teknik Dergi, 32(4), 11013-11027. https://doi.org/10.18400/tekderg.593595
AMA Taştan K, Yıldırım N. Flow Rate along the Length of the Swirling Vortex Axis at an Intake. Teknik Dergi. July 2021;32(4):11013-11027. doi:10.18400/tekderg.593595
Chicago Taştan, Kerem, and Nevzat Yıldırım. “Flow Rate Along the Length of the Swirling Vortex Axis at an Intake”. Teknik Dergi 32, no. 4 (July 2021): 11013-27. https://doi.org/10.18400/tekderg.593595.
EndNote Taştan K, Yıldırım N (July 1, 2021) Flow Rate along the Length of the Swirling Vortex Axis at an Intake. Teknik Dergi 32 4 11013–11027.
IEEE K. Taştan and N. Yıldırım, “Flow Rate along the Length of the Swirling Vortex Axis at an Intake”, Teknik Dergi, vol. 32, no. 4, pp. 11013–11027, 2021, doi: 10.18400/tekderg.593595.
ISNAD Taştan, Kerem - Yıldırım, Nevzat. “Flow Rate Along the Length of the Swirling Vortex Axis at an Intake”. Teknik Dergi 32/4 (July 2021), 11013-11027. https://doi.org/10.18400/tekderg.593595.
JAMA Taştan K, Yıldırım N. Flow Rate along the Length of the Swirling Vortex Axis at an Intake. Teknik Dergi. 2021;32:11013–11027.
MLA Taştan, Kerem and Nevzat Yıldırım. “Flow Rate Along the Length of the Swirling Vortex Axis at an Intake”. Teknik Dergi, vol. 32, no. 4, 2021, pp. 11013-27, doi:10.18400/tekderg.593595.
Vancouver Taştan K, Yıldırım N. Flow Rate along the Length of the Swirling Vortex Axis at an Intake. Teknik Dergi. 2021;32(4):11013-27.