BibTex RIS Cite

-

Year 2012, Volume: 23 Issue: 112, 5869 - 5884, 01.05.2012

Abstract

References

  • Ülke, A., Muskingum Metodu Kullanılarak Taşkm Ötelenmesi, Yüksek Lisans Tezi, Süleyman Demirel Universitesi Fen Bilimleri Enstitüsü, 2003.
  • http:/www.tumgazeteler.com 11.09.2009, son ziyaret Şubat 2010.
  • Beyazıt, M., Türkiye’de Taşkmlar ve Taşkın Kontrol Yönetimi, Türkiye Mühendislik Haberleri, 418, 27-29, 2002.
  • Hydrologic Engineering Center, River Routing With HEC-l and HEC-2. Training Document No: 30, 146p. U.S. Army Corps Of Engineers, Davis, California, USA, 1990.
  • Ponce, V. M., SimpliŞed Muskingum Routing Equation. Journal of Hydraulics Division, Vol. 105,No: HY1, 85-91, 1979.
  • Strupczewski, W., Kundzewicz, Z., Muskingum Method Revisited. Journal of Hydrology, 48, 327-342, 1980.
  • Perumal, M., Multilinear Muskingum Flood Routing Method. Journal of Hydrology 133, 259-272, 1992.
  • Kshirsagar, M. M., Rajagopalan, B., Lall, U., Optimal Parameter Estimation for Muskingum Routing With Ungaged Lateral Inşow, Journal of Hydrology 169, 25-35, 1995.
  • Szymkiewicz, R., An Alternative IUH for the Hydrological Lumped Models. Journal of Hydrology, 259, 246-253, 2002.
  • Birkhead, A. L., James, C. S., Muskingum River Routing With Dynamic Bank Storage. Journal of Hydrology 264, 113-132, 2002.
  • Mohan, S., Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm. Journal of Hydraulic Engineering, Vol. 123, No: 2, 137-142, 1997.
  • Chu, H.J., The Muskingum Flood Routing Model Using a Neuro-fuzzy Approach. KSCE Journal of Civil Engineering, Vol.13, No:5, 371-376, 2009.
  • Ponce, V. M., Yevjevich, V., Muskingum— Cunge Method With Variable Parameters. Journal of Hydraulics Division, Vol. 104, No: HY12, 1663-1667, 1978.
  • Barry, D. A., Bajracharya, K., On the Muskingum-Cunge Flood Routing Method. Environment International, Vol. 21, No: 5, 485-490, 1995.
  • Tingsanchali, T., Manandhar, S. K., Analytical Diffusion Model for Flood Routing. Journal of Hydraulic Engineering, Vol. 111, No: 3, 43 5-453, 1985.
  • Ponce, V. M., Huston, P. T., New Perspective on the Convection—Diffusion—Dispersion Equation. Water Resources Research, Vol. 30, No: 5, 16 19- 1620, 1994.
  • Moussa, R., Bocquillon, C., Algorithms for Solving the Diffususive Wave Flood Routing Equation. Hydrological Processes, Vol. 10, 105-123, 1996.
  • Bajracharya, K., Barry, D. A., Accuracy Criteria for Linearised Diffusion Wave Flood Routing. Journal of Hydrology, 195, 200-217, 1997.
  • Moussa, R., Bocquillon, C., Fractional—Step Method Solution of Diffusive Wave Equation. Journal of Hydrologic Engineering, Vol. 6, No: 1, 11-19, 2001.
  • Ponce, V. M., The Kinematic Wave Controversy. Journal of Hydraulic Engineering, Vol. 117, No: 4, 511-525,1991.
  • Nguyen, Q. K., Kawano, H., Simultaneous Solution for Flood Routing in Channel Networks. Journal of Hydraulic Engineering, Vol. 121, No: 10, 744-750, 1994.
  • Keskin, M. E., Ağıralioğlu, N., A Simplified Dynamic Model for Flood Routing in Rectangular Channels. Journal of Hydrology 202, 302-314, 1997 .
  • Kaya, B., Arisoy, Y., Ulke, A., Differential Quadrature Method (DQM) for Numerical Solution of the Diffusion Wave Model, Journal of Flood Engineering, 1(2), 133-147, 2010.
  • Hashemi, M.R., Abedini, M.J., Malekzadeh, P., A Differential Quadrature Analysis of Unsteady Open Channel Flow, Applied Mathematical Modelling, No.31, 1594-1608, 2007.
  • Kaya, B., Arısoy, Y., Differential Quadrature Method for Linear Long Wave Propagation in Open Channels, "Wave Propagation in Materials for Modern Applications", Ed.:Andrey Petrin, ISBN 978-953-7619-65-7, Published by Intech, Vukovar, Crotia, 253-266, 2010.
  • Sütçüler Taşkm Raporu, Devlet Su İşleri XVIII. Bölge Müdürlüğü, 1995.
  • Chow, V. T., Open Channel Hydraulics. McGraw-Hill Book Company, New York, USA, 680 sayfa, 1959.
  • Ünsal, I., Değişken Akımların Hidroliği. Matbaa Teknisyenleri Basımevi. 286 sayfa, İstanbul, 1978.
  • Shultz M. J., Comparision of Flood Routing Methods for a Rapidly Rising Hydrograph Routed Through a Very Wide Channel. MSc Thesis, Texas Arlington Üniversitesi, USA, 146 sayfa, 1992.
  • Bellman, R., Kashef, B.G., Casti, J., Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equation. Journal Of Comp. Physics, 10, 40-52, 1972.
  • Shu, C., Wang, L., Chew, Y.T., Zhao, N., Numerical Study of Eccentric Couette— Taylor Flows and Effect of Eccentricity on Flow Patterns, Theoret. Comput. Fluid Dynamics 18, 43—59, 2004.
  • Shu, C., Differential Quadrature and Its Application in Engineering, Springer, 2000.
  • Civalek, Ö., Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) for Buckling Analysis of Thin Isotropic Plates and Elastic Columns, . Engineering Structures, 26, 176-191, 2004.
  • Civalek, Ö., Çok Serbestlik Dereceli Sistemlerin Harmonik Diferansiyel Quadrature (HDQ) Metodu ile Lineer ve Lineer Olmayan Dinamik Analizi, Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, 2003.
  • 5] Kaya, B., Solution of the Advection—Diffusion Equation Using the Differential Quadrature Method, KSCE Journal of Civil Engineering, Vol. 14, No.1, 69-75, 2010.

Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği

Year 2012, Volume: 23 Issue: 112, 5869 - 5884, 01.05.2012

Abstract

Taşkınlar, büyük debi, büyük hızlar ve yüksek su seviyeleri ile karakterize edilmektedir.
Akarsular üzerinde inşa edilecek tüm yapılar için bu taşkın karakteristiklerinin bilinmesi
gerekir. Bu çalışmada, taşkın akımının modellenmesi amacıyla Muskingum yöntemi ve
Kinematik dalga modeli (KDM) kullanılmıştır. KDM’nin sayısal çözümünde ise
Diferansiyel Quadrature Metodu (DQM) kullanılmıştır. Kinematik dalga modelinin DQM
kullanılarak gerçek bir taşkın problemine uygulanması ilk kez bu çalışmada
gerçekleştirilmektedir. Sayısal çözümde 4 Kasım 1995 yılında Aksu Akarsuyu’nun bir kolu
olan Sütçüler Değirmendere’de meydana gelen taşkın olayı dikkate alınmıştır. DQM
sonuçlarının ölçüm hidrografı ile Muskingum yöntemi sonuçlarına göre daha uyumlu
olduğunu görülmüştür.

References

  • Ülke, A., Muskingum Metodu Kullanılarak Taşkm Ötelenmesi, Yüksek Lisans Tezi, Süleyman Demirel Universitesi Fen Bilimleri Enstitüsü, 2003.
  • http:/www.tumgazeteler.com 11.09.2009, son ziyaret Şubat 2010.
  • Beyazıt, M., Türkiye’de Taşkmlar ve Taşkın Kontrol Yönetimi, Türkiye Mühendislik Haberleri, 418, 27-29, 2002.
  • Hydrologic Engineering Center, River Routing With HEC-l and HEC-2. Training Document No: 30, 146p. U.S. Army Corps Of Engineers, Davis, California, USA, 1990.
  • Ponce, V. M., SimpliŞed Muskingum Routing Equation. Journal of Hydraulics Division, Vol. 105,No: HY1, 85-91, 1979.
  • Strupczewski, W., Kundzewicz, Z., Muskingum Method Revisited. Journal of Hydrology, 48, 327-342, 1980.
  • Perumal, M., Multilinear Muskingum Flood Routing Method. Journal of Hydrology 133, 259-272, 1992.
  • Kshirsagar, M. M., Rajagopalan, B., Lall, U., Optimal Parameter Estimation for Muskingum Routing With Ungaged Lateral Inşow, Journal of Hydrology 169, 25-35, 1995.
  • Szymkiewicz, R., An Alternative IUH for the Hydrological Lumped Models. Journal of Hydrology, 259, 246-253, 2002.
  • Birkhead, A. L., James, C. S., Muskingum River Routing With Dynamic Bank Storage. Journal of Hydrology 264, 113-132, 2002.
  • Mohan, S., Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm. Journal of Hydraulic Engineering, Vol. 123, No: 2, 137-142, 1997.
  • Chu, H.J., The Muskingum Flood Routing Model Using a Neuro-fuzzy Approach. KSCE Journal of Civil Engineering, Vol.13, No:5, 371-376, 2009.
  • Ponce, V. M., Yevjevich, V., Muskingum— Cunge Method With Variable Parameters. Journal of Hydraulics Division, Vol. 104, No: HY12, 1663-1667, 1978.
  • Barry, D. A., Bajracharya, K., On the Muskingum-Cunge Flood Routing Method. Environment International, Vol. 21, No: 5, 485-490, 1995.
  • Tingsanchali, T., Manandhar, S. K., Analytical Diffusion Model for Flood Routing. Journal of Hydraulic Engineering, Vol. 111, No: 3, 43 5-453, 1985.
  • Ponce, V. M., Huston, P. T., New Perspective on the Convection—Diffusion—Dispersion Equation. Water Resources Research, Vol. 30, No: 5, 16 19- 1620, 1994.
  • Moussa, R., Bocquillon, C., Algorithms for Solving the Diffususive Wave Flood Routing Equation. Hydrological Processes, Vol. 10, 105-123, 1996.
  • Bajracharya, K., Barry, D. A., Accuracy Criteria for Linearised Diffusion Wave Flood Routing. Journal of Hydrology, 195, 200-217, 1997.
  • Moussa, R., Bocquillon, C., Fractional—Step Method Solution of Diffusive Wave Equation. Journal of Hydrologic Engineering, Vol. 6, No: 1, 11-19, 2001.
  • Ponce, V. M., The Kinematic Wave Controversy. Journal of Hydraulic Engineering, Vol. 117, No: 4, 511-525,1991.
  • Nguyen, Q. K., Kawano, H., Simultaneous Solution for Flood Routing in Channel Networks. Journal of Hydraulic Engineering, Vol. 121, No: 10, 744-750, 1994.
  • Keskin, M. E., Ağıralioğlu, N., A Simplified Dynamic Model for Flood Routing in Rectangular Channels. Journal of Hydrology 202, 302-314, 1997 .
  • Kaya, B., Arisoy, Y., Ulke, A., Differential Quadrature Method (DQM) for Numerical Solution of the Diffusion Wave Model, Journal of Flood Engineering, 1(2), 133-147, 2010.
  • Hashemi, M.R., Abedini, M.J., Malekzadeh, P., A Differential Quadrature Analysis of Unsteady Open Channel Flow, Applied Mathematical Modelling, No.31, 1594-1608, 2007.
  • Kaya, B., Arısoy, Y., Differential Quadrature Method for Linear Long Wave Propagation in Open Channels, "Wave Propagation in Materials for Modern Applications", Ed.:Andrey Petrin, ISBN 978-953-7619-65-7, Published by Intech, Vukovar, Crotia, 253-266, 2010.
  • Sütçüler Taşkm Raporu, Devlet Su İşleri XVIII. Bölge Müdürlüğü, 1995.
  • Chow, V. T., Open Channel Hydraulics. McGraw-Hill Book Company, New York, USA, 680 sayfa, 1959.
  • Ünsal, I., Değişken Akımların Hidroliği. Matbaa Teknisyenleri Basımevi. 286 sayfa, İstanbul, 1978.
  • Shultz M. J., Comparision of Flood Routing Methods for a Rapidly Rising Hydrograph Routed Through a Very Wide Channel. MSc Thesis, Texas Arlington Üniversitesi, USA, 146 sayfa, 1992.
  • Bellman, R., Kashef, B.G., Casti, J., Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equation. Journal Of Comp. Physics, 10, 40-52, 1972.
  • Shu, C., Wang, L., Chew, Y.T., Zhao, N., Numerical Study of Eccentric Couette— Taylor Flows and Effect of Eccentricity on Flow Patterns, Theoret. Comput. Fluid Dynamics 18, 43—59, 2004.
  • Shu, C., Differential Quadrature and Its Application in Engineering, Springer, 2000.
  • Civalek, Ö., Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) for Buckling Analysis of Thin Isotropic Plates and Elastic Columns, . Engineering Structures, 26, 176-191, 2004.
  • Civalek, Ö., Çok Serbestlik Dereceli Sistemlerin Harmonik Diferansiyel Quadrature (HDQ) Metodu ile Lineer ve Lineer Olmayan Dinamik Analizi, Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, 2003.
  • 5] Kaya, B., Solution of the Advection—Diffusion Equation Using the Differential Quadrature Method, KSCE Journal of Civil Engineering, Vol. 14, No.1, 69-75, 2010.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Birol Kaya This is me

Aslı Ülke This is me

Publication Date May 1, 2012
Submission Date June 18, 2015
Published in Issue Year 2012 Volume: 23 Issue: 112

Cite

APA Kaya, B., & Ülke, A. (2012). Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği. Teknik Dergi, 23(112), 5869-5884.
AMA Kaya B, Ülke A. Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği. Teknik Dergi. May 2012;23(112):5869-5884.
Chicago Kaya, Birol, and Aslı Ülke. “Kinematik Dalga Modelinin DQM Ile Çözümü Ve Sütçüler Taşkını Örneği”. Teknik Dergi 23, no. 112 (May 2012): 5869-84.
EndNote Kaya B, Ülke A (May 1, 2012) Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği. Teknik Dergi 23 112 5869–5884.
IEEE B. Kaya and A. Ülke, “Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği”, Teknik Dergi, vol. 23, no. 112, pp. 5869–5884, 2012.
ISNAD Kaya, Birol - Ülke, Aslı. “Kinematik Dalga Modelinin DQM Ile Çözümü Ve Sütçüler Taşkını Örneği”. Teknik Dergi 23/112 (May 2012), 5869-5884.
JAMA Kaya B, Ülke A. Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği. Teknik Dergi. 2012;23:5869–5884.
MLA Kaya, Birol and Aslı Ülke. “Kinematik Dalga Modelinin DQM Ile Çözümü Ve Sütçüler Taşkını Örneği”. Teknik Dergi, vol. 23, no. 112, 2012, pp. 5869-84.
Vancouver Kaya B, Ülke A. Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği. Teknik Dergi. 2012;23(112):5869-84.