Research Article
BibTex RIS Cite

A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus

Year 2018, Volume: 29 Issue: 4, 8497 - 8513, 01.07.2018
https://doi.org/10.18400/tekderg.336801

Abstract



Turbulent flow is a
complicated process that frequently appears not only in nature but also in
engineering applications. Numerical methods frequently are used to solve
turbulent flow problems due to the trouble in solving Navier-Stokes
equations.  Navier-Stokes equations including inner pipe rotation
effect are solved via two different numerical techniques. The efficiency of the
proposed numerical technique is compared with the obtained solutions of
Newton-Raphson method. The proposed method is computationally expensive,
however, it may allow tackling the non-linearity of challenging problems in
hydraulics. A mechanistic model including proposed numerical method is also
developed in order to predict pressure gradient for fully developed turbulent
flow through fully eccentric horizontal annulus including pipe rotation. The
computational frameworks are developed in MATLAB. Mathematical model is
confirmed by the experimental study, which is conducted in Izmir Katip Celebi
University.  Results show that
computational fluid model is a capable of estimating frictional pressure
gradient with an error of less than 14 %.

References

  • Referans1 Deissler, R. G. (1954). Analysis of turbulent heat transfer, mass transfer, and friction in smooth tubes at high Prandtl and Schmidt numbers.
  • Referans2 Deissler, R. G., & Taylor, M. F. (1955). Analysis of fully developed turbulent heat transfer and flow in an annulus with various eccentricities. NACA Tech. Note 3451.
  • Referans3 Wolffe, R. A., & Clump, C. W. (1963). The maximum velocity locus for axial turbulent flow in an eccentric annulus. AIChE Journal, 9(3), 424-425.
  • Referans4 Heyda, J. F. (1959). A Green's function solution for the case of laminar incompressible flow between non-concentric circular cylinders. Journal of the Franklin Institute, 267(1), 25-34.
  • Referans5 Jonsson, V. K., & Sparrow, E. M. (1965). Results of laminar flow analysis and turbulent flow experiments for eccentric annular ducts. AIChE Journal, 11(6), 1143-1145.
  • Referans6 Jonsson, V. K., & Sparrow, E. M. (1966). Experiments on turbulent-flow phenomena in eccentric annular ducts. Journal of Fluid Mechanics, 25(01), 65-86.
  • Referans7 Rehme, K. (1973). Simple method of predicting friction factors of turbulent flow in non-circular channels. International Journal of Heat and Mass Transfer, 16(5), 933-950.
  • Referans8 Kacker, S. C. (1973). Some aspects of fully developed turbulent flow in non-circular ducts. Journal of Fluid Mechanics, 57(03), 583-602.
  • Referans9 Usui, H., & Tsuruta, K. (1980). Analysis of fully developed turbulent flow in an eccentric annulus. Journal of Chemical Engineering of Japan, 13(6), 445-450.
  • Referans10 Tosun, I. (1984). Axial laminar flow in an eccentric annulus: an approximate solution. AIChE journal, 30(5), 877-878.
  • Referans11 Özgen, C., & Tosun, I. (1987). Application of geometric inversion to the eccentric annulus system. AIChE journal, 33(11), 1903-1907.
  • Referans12 Uner, D., Ozgen, C., & Tosun, I. (1988). An approximate solution for non-Newtonian flow in eccentric annuli. Industrial & engineering chemistry research, 27(4), 698-701.
  • Referans13 Ogino, F., Sakano, T., & Mizushina, T. (1987). Momentum and heat transfers from fully developed turbulent flow in an eccentric annulus to inner and outer tube walls. Heat and Mass Transfer, 21(2), 87-93.
  • Referans14 Haciislamoglu, M., & Langlinais, J. (1990). Non-Newtonian flow in eccentric annuli. Transactions of the ASME. Journal of Energy Resources Technology, 112(3), 163-169.
  • Referans15 Nouri, J. M., Umur, H., & Whitelaw, J. H. (1993). Flow of Newtonian and non-Newtonian fluids in concentric and eccentric annuli. Journal of Fluid Mechanics, 253, 617-641.
  • Referans16 Nouri, J. M., & Whitelaw, J. H. (1994). Flow of Newtonian and non-Newtonian fluids in a concentric annulus with rotation of the inner cylinder. Transactions-American Society Of Mechanical Engineers Journal Of Fluids Engineering, 116, 821-821.
  • Referans17 Erge, O., Ozbayoglu, M. E., Miska, S. Z., Yu, M., Takach, N., Saasen, A., & May, R. (2014). Effect of drillstring deflection and rotary speed on annular frictional pressure losses. Journal of Energy Resources Technology, 136(4), 042909.
  • Referans18 Mossa, M. (2006). Resistance coefficient in a smooth concentric annular pipe. Journal of Hydraulic Research, 44(6), 832-840.
  • Referans19 Erge, O., Vajargah, A. K., Ozbayoglu, M. E., & van Oort, E. (2016, March). Improved ECD Prediction and Management in Horizontal and Extended Reach Wells with Eccentric Drillstrings. In IADC/SPE Drilling Conference and Exhibition. Society of Petroleum Engineers.
  • Referans20 Rushd, S., Shazed, A. R., Faiz, T., Kelessidis, V., Hassan, I. G., & Rahman, A. (2017, March). CFD Simulation of Pressure Losses in Eccentric Horizontal Wells. In SPE Middle East Oil & Gas Show and Conference. Society of Petroleum Engineers.
  • Referans21 Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot (2002) Transport phenomena. John Wiley & Sons.
  • Referans22 Iyoho, Aniekan W., and Jamal J. Azar. (1981) An accurate slot-flow model for non-Newtonian fluid flow through eccentric annuli, Society of Petroleum Engineers Journal 21.05: 565-572.
  • Referans23 Ulker, E., Sorgun, M., Solmus, I., & Karadeniz, Z. H. (2017). Determination of Newtonian Fluid Flow Behavior Including Temperature Effects in Fully Eccentric Annulus. Journal of Energy Resources Technology, 139(4),04200.

A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus

Year 2018, Volume: 29 Issue: 4, 8497 - 8513, 01.07.2018
https://doi.org/10.18400/tekderg.336801

Abstract



Türbülanslı akımlar, yalnızca doğada değil mühendislik
uygulamalarında da görülen karmaşık bir yapıdadır.  Navier-Stokes denklemlerinin türbülanslı
çözümlerinin karmaşık ve zor olmasından dolayı sayısal yöntemler sıklıkla
kullanılır. İki farklı sayısal teknik vasıtasıyla boru dönmesi hesaba katılmış
Navier-Stokes denklemleri çözülmüştür. Geliştirilen sayısal yöntemin etkinliği
Newton-Raphson method kullanılarak elde edilen sonuçlarla karşılaştırılmıştır.
Geliştirilen sayısal metot her ne kadar işlevsel olarak ağır olsa da,
hidrolikteki linear olmayan zor problemlerin çözümünü sağlamaya yol açabilir.
İç içe geçmiş borular arasından geçen tam gelişmiş türbülanslı akımın içteki
borunun dönmesi etkili olduğu basınç farklarının tayini için geliştirilmiş
sayısal metot ile birlikte bir mekanistik model geliştirilmiştir. Sayısal
hesaplamalar MATLAB’ta geliştirilen kodlarla yapılmıştır. Yapılan sayısal
hesaplamalar İzmir Katip Çelebi Üniversitesi’nde yapılan deneylerin
sonuçlarıyla teyit edilmiştir. Elde edilen sonuçlar, hesaplamalı akışkanlar
modelinin basınç gradyanını  %14’den daha
az bir hata ile tahmin ettiğini  göstermiştir.

References

  • Referans1 Deissler, R. G. (1954). Analysis of turbulent heat transfer, mass transfer, and friction in smooth tubes at high Prandtl and Schmidt numbers.
  • Referans2 Deissler, R. G., & Taylor, M. F. (1955). Analysis of fully developed turbulent heat transfer and flow in an annulus with various eccentricities. NACA Tech. Note 3451.
  • Referans3 Wolffe, R. A., & Clump, C. W. (1963). The maximum velocity locus for axial turbulent flow in an eccentric annulus. AIChE Journal, 9(3), 424-425.
  • Referans4 Heyda, J. F. (1959). A Green's function solution for the case of laminar incompressible flow between non-concentric circular cylinders. Journal of the Franklin Institute, 267(1), 25-34.
  • Referans5 Jonsson, V. K., & Sparrow, E. M. (1965). Results of laminar flow analysis and turbulent flow experiments for eccentric annular ducts. AIChE Journal, 11(6), 1143-1145.
  • Referans6 Jonsson, V. K., & Sparrow, E. M. (1966). Experiments on turbulent-flow phenomena in eccentric annular ducts. Journal of Fluid Mechanics, 25(01), 65-86.
  • Referans7 Rehme, K. (1973). Simple method of predicting friction factors of turbulent flow in non-circular channels. International Journal of Heat and Mass Transfer, 16(5), 933-950.
  • Referans8 Kacker, S. C. (1973). Some aspects of fully developed turbulent flow in non-circular ducts. Journal of Fluid Mechanics, 57(03), 583-602.
  • Referans9 Usui, H., & Tsuruta, K. (1980). Analysis of fully developed turbulent flow in an eccentric annulus. Journal of Chemical Engineering of Japan, 13(6), 445-450.
  • Referans10 Tosun, I. (1984). Axial laminar flow in an eccentric annulus: an approximate solution. AIChE journal, 30(5), 877-878.
  • Referans11 Özgen, C., & Tosun, I. (1987). Application of geometric inversion to the eccentric annulus system. AIChE journal, 33(11), 1903-1907.
  • Referans12 Uner, D., Ozgen, C., & Tosun, I. (1988). An approximate solution for non-Newtonian flow in eccentric annuli. Industrial & engineering chemistry research, 27(4), 698-701.
  • Referans13 Ogino, F., Sakano, T., & Mizushina, T. (1987). Momentum and heat transfers from fully developed turbulent flow in an eccentric annulus to inner and outer tube walls. Heat and Mass Transfer, 21(2), 87-93.
  • Referans14 Haciislamoglu, M., & Langlinais, J. (1990). Non-Newtonian flow in eccentric annuli. Transactions of the ASME. Journal of Energy Resources Technology, 112(3), 163-169.
  • Referans15 Nouri, J. M., Umur, H., & Whitelaw, J. H. (1993). Flow of Newtonian and non-Newtonian fluids in concentric and eccentric annuli. Journal of Fluid Mechanics, 253, 617-641.
  • Referans16 Nouri, J. M., & Whitelaw, J. H. (1994). Flow of Newtonian and non-Newtonian fluids in a concentric annulus with rotation of the inner cylinder. Transactions-American Society Of Mechanical Engineers Journal Of Fluids Engineering, 116, 821-821.
  • Referans17 Erge, O., Ozbayoglu, M. E., Miska, S. Z., Yu, M., Takach, N., Saasen, A., & May, R. (2014). Effect of drillstring deflection and rotary speed on annular frictional pressure losses. Journal of Energy Resources Technology, 136(4), 042909.
  • Referans18 Mossa, M. (2006). Resistance coefficient in a smooth concentric annular pipe. Journal of Hydraulic Research, 44(6), 832-840.
  • Referans19 Erge, O., Vajargah, A. K., Ozbayoglu, M. E., & van Oort, E. (2016, March). Improved ECD Prediction and Management in Horizontal and Extended Reach Wells with Eccentric Drillstrings. In IADC/SPE Drilling Conference and Exhibition. Society of Petroleum Engineers.
  • Referans20 Rushd, S., Shazed, A. R., Faiz, T., Kelessidis, V., Hassan, I. G., & Rahman, A. (2017, March). CFD Simulation of Pressure Losses in Eccentric Horizontal Wells. In SPE Middle East Oil & Gas Show and Conference. Society of Petroleum Engineers.
  • Referans21 Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot (2002) Transport phenomena. John Wiley & Sons.
  • Referans22 Iyoho, Aniekan W., and Jamal J. Azar. (1981) An accurate slot-flow model for non-Newtonian fluid flow through eccentric annuli, Society of Petroleum Engineers Journal 21.05: 565-572.
  • Referans23 Ulker, E., Sorgun, M., Solmus, I., & Karadeniz, Z. H. (2017). Determination of Newtonian Fluid Flow Behavior Including Temperature Effects in Fully Eccentric Annulus. Journal of Energy Resources Technology, 139(4),04200.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erman Ülker This is me

Sıla Övgü Korkut Uysal This is me

Mehmet Sorgun

Publication Date July 1, 2018
Submission Date September 5, 2017
Published in Issue Year 2018 Volume: 29 Issue: 4

Cite

APA Ülker, E., Korkut Uysal, S. Ö., & Sorgun, M. (2018). A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus. Teknik Dergi, 29(4), 8497-8513. https://doi.org/10.18400/tekderg.336801
AMA Ülker E, Korkut Uysal SÖ, Sorgun M. A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus. Teknik Dergi. July 2018;29(4):8497-8513. doi:10.18400/tekderg.336801
Chicago Ülker, Erman, Sıla Övgü Korkut Uysal, and Mehmet Sorgun. “A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus”. Teknik Dergi 29, no. 4 (July 2018): 8497-8513. https://doi.org/10.18400/tekderg.336801.
EndNote Ülker E, Korkut Uysal SÖ, Sorgun M (July 1, 2018) A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus. Teknik Dergi 29 4 8497–8513.
IEEE E. Ülker, S. Ö. Korkut Uysal, and M. Sorgun, “A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus”, Teknik Dergi, vol. 29, no. 4, pp. 8497–8513, 2018, doi: 10.18400/tekderg.336801.
ISNAD Ülker, Erman et al. “A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus”. Teknik Dergi 29/4 (July 2018), 8497-8513. https://doi.org/10.18400/tekderg.336801.
JAMA Ülker E, Korkut Uysal SÖ, Sorgun M. A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus. Teknik Dergi. 2018;29:8497–8513.
MLA Ülker, Erman et al. “A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus”. Teknik Dergi, vol. 29, no. 4, 2018, pp. 8497-13, doi:10.18400/tekderg.336801.
Vancouver Ülker E, Korkut Uysal SÖ, Sorgun M. A Numerical Approach for Modeling of Turbulent Newtonian Fluid Flow in Eccentric Annulus. Teknik Dergi. 2018;29(4):8497-513.