Research Article
BibTex RIS Cite

A Method For Determination of Accident Probability in Construction Industry

Year 2018, Volume: 29 Issue: 4, 8537 - 8561, 01.07.2018
https://doi.org/10.18400/tekderg.363613

Abstract











Safety
issues for construction industry have been considered in almost every country.
In this paper, an objective and quantitative accident probability calculation
approach is proposed using actual construction work accidents in between
2000-2013. Probabilities were calculated by using Poisson distribution where
accident rates and exposure values were used as distribution parameters. In an
industry where the accidents are recorded in non-specific standards, it is very
difficult to represent probability of accidents with a known distribution
model. Thanks to the approach presented in this paper it was possible to
provide an objective method to obtain accident probabilities using the Poisson
distribution.

References

  • [1] Zou, P., X.,W., Sunindijo, R., Y., 2013. Skills for managing safety risk, implementing safety task, and developing positive safety climate in construction project. Automation in Construction, 34, 92-100.
  • [2] CFOI. Census of Fatal Occupational Injuries Report, 2013.<http://www.bls.gov/iif/oshcfoi1.htm> (retrieved 12.05.14).
  • [3] Loosemore, M., Andonakis, N., 2007. Barriers to implementing OHS reforms – the experience of small subcontractors in the Australian construction industry. International Journal of Project Management 25, 579–588.
  • [4] Yi, J.-s., Kim Y.-w., Kim K.-a., Koo B. 2012. A suggested color scheme for reducing perception-related accidents on construction work sites. Accident Analysis and Prevention, 48, 185-192.
  • [5] ILO. International Labour Organization, Statistics and Database, LABORSTA, Occupational Injuries. <http://www.ilo.org/ilostat/faces/home/statisticaldata/data_by_subject?_adf.ctrl-state=vchypfgka_4&_afrLoop=598083992046714> (retrieved 06.04.2014)
  • [6] SII. Social Insurance Institution Occupational Accidents Statistics Report, 2012. 10.12.2013. Retrieved from http://www.isteguvenlik.tc/SGK2012IsKazaIstatistik.pdf (in Turkish).
  • [7] Gurcanli E., Bilir S., Sevim M., 2015. Activity Based Risk Assessment And Safety Cost Estimation For Residential Building Construction Projects. Safety Science, 2015, 80, 1–12, DOI: 10.1016/j.ssci.2015.07.002.
  • [8] Gurcanli G.E., Mungen U., 2013. Analysis of construction accidents in turkey and responsible parties. National Industrial Health, 51 (6), 581-595.
  • [9] Baradan, S., and Usmen, M. A. 2006. Comparative injury and fatality risk analysis of building trades. J. Constr. Eng. Manage., 132(5), 533–539.
  • [10] Gnoni, M. G., Saleh, J. H., 2017. Near-miss management systems and observability-in-depth: Handling safety incidents and accident precursors in light of safety principles. Safety Science, 91, 154-167.
  • [11] Gangolells, M., Casals, M., Forcada, N., Roca, X. and Fuertes, A. 2010. Mitigating construction safety risks using prevention through design. Journal of Safety Research, Vol. 41, 107-122.
  • [12] Gurcanli G.E., Mungen U., 2009. An occupational safety risk analysis method at construction sites using fuzzy sets. International J. of Industrial Ergonomics 39(2), 371-387.
  • [13] Hallowell, M. 2011. Risk-Based Framework for Safety Investment in Construction Organizations. J. Constr. Eng. Manage., 137(8), 592–599.
  • [14] Irumba R., 2014. Spatial analysis of construction accidents in Kampala, Uganda. Safety Science. 64. 109-120.
  • [15] Park, C. S., Kim, H. J., 2012. A framework for construction safety management and visualization system. Automation in Construction 33, 95–103.
  • [16] Raviv, R., Fishbain, B., Shapira, A., 2017a. Analyzing risk factors in crane-related near-miss and accident reports. Safety Science, 91, 192-205.
  • [17] Raviv, R., Fishbain, B., Shapira, A., 2017b. AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry. Safety Science, 91, 298-309.
  • [18] Zhang, S., Sulankivi, K., Kiviniemi, M., Romo, I., Eastman, C. M., Teizer, J., 2015. BIM-based fall hazard identification and prevention in construction safety planning. Safety Science, 72, 31-45.
  • [19] Zwetsloot, G.I.H.M., Kines, P., Wybo, J.L., Ruotsala, R., Drupsteen, L., Bezemer, R. A., 2017. Zero Accident Vision based strategies in organisations: Innovative perspectives. Safety Science, 91, 260-268.
  • [20] Van Nunen, K., Reniers, G., Ponnet, K., Cozzani, V., 2016. Major accident prevention decision-making: A large-scale survey-based analysis. Safety Science, 88, 242-250.
  • [21] Jocelyn, S., Chinniah, Y., Ouali, M., S., 2016. Contribution of dynamic experience feedback to the quantitative estimation of risks for preventing accidents: A proposed methodology for machinery safety. Safety Science, 88, 64-75.
  • [22] Wang, Y., Weidmann, U., A., Wang, W., 2017. Using catastrophe theory to describe railway system safety and discuss system risk concept. Safety Science, 91, 269-285.
  • [23] Brauer, R. L. 1994. Risk management and assessment. Safety and health for engineers, Van Nostrand Reinhold, New York, 543–572.
  • [24] Lee, S., and Halpin, D. 2003. Predictive tool for estimating accident risk. J. Constr. Eng. Manage., 129(4), 431–436.
  • [25] Jannadi, O., and Almishari, S. 2003. Risk assessment in construction. J. Constr. Eng. Manage., 129(5), 492–500.
  • [26] Hallowell, M. and Gambatese, J. 2009. Activity-Based Safety Risk Quantification for Concrete Formwork Construction. J. Constr. Eng. Manage., 135(10), 990–998.
  • [27] Sun, Y., Fang, D., Wang, S., Dai, M., and Lv, X. 2008. Safety risk identification and assessment for Beijing Olympic venues construction.”J. Manage. Eng., 24(1), 40–47.
  • [28] Mitropoulos, P., Namboodiri M., 2011. New method for measuring the safety risk of construction activities: task demand assessment. J. of Constr. Eng and Manage., 137( 1), 30-38.
  • [29] BLS. Bureau of Labor Statistics. 2013. <http://www.bls.gov/iif/#data> (retrieved 25.06.13).
  • [30] Casanovas, M. M., Armengou,J., Ramos, G. 2014. Occupational risk ındex for assessment of risk in construction work by activity. Journal of Construction Engineering and Management,Vol. 140, pp.04013035-1-04013035-9.
  • [31] Woodruff, J. M. 2005. Consequence and likelihood in risk estimation: A matter of balance in UK health and safety risk assessment practice. Safety Science, 43(5), 345-353.
  • [32] Birgönül, M. T., & Dikmen, İ. (1996). İnşaat projelerinin risk yönetimi. İMO teknik Dergi, 7(4), 1305-1326.
  • [33] Baradan, S., Akboğa, Ö., Çetinkaya, U., & Usmen, M. A. (2016). Ege Bölgesindeki İnşaat İş Kazalarının Sıklık ve Çapraz Tablolama Analizleri. İMO Teknik Dergi, 7345(7370), 448.
  • [34] Erginel, N., & TOPTANCI, Ş. (2017). İş Kazası Verilerinin Olasılık Dağılımları İle Modellenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 5(SI), 201-212.
  • [35] OSHA. 1971/97. Recording and reporting occupational injuries and illness. Regulations, Part 1904, Occupational Safety and Health Administration, U.S. Departmant of Labor, Washington, D.C.
  • [36] ILO. 1998. Meeting of Experts on Labour Statistics. Report MELSOI/1998/1, Geneva. Ingstad, O. and Bodsberg, L., 1989. CRIOP: A Scenario - Method for Evaluation of the Offshore Control Centre. SINTEF, Report No. STF75 A89028, Trondheim.
  • [37] Zhang, S., Teizer, J., Lee, J. K., Eastman, C. M., Venugopal, M., 2013. Building information modelling (BIM) and safety: automatic safety checking of construction models and schedules. Automation in Construction, 29,183-195.
  • [38] Borsos, A, Cafiso, S., D’Agostino, C., Miletics, D., 2016. Comparison of Italian and Hungarian black spot ranking. Transportation Research Procedia, 14, 2148 – 2157.
  • [39] Cafisoa, S.,Di Silvestroa, G., Di Guardoa, G., 2012. Application of Highway Safety Manual to Italian divided multilane highways. Procedia - Social and Behavioral Sciences 53, 911 – 920.
  • [40] Van Geelen, H., Volckaert, A., Sarrazin, R., Janssens, I., 2016. Evolutionary approach of accident concentration zones. Transportation Research Procedia, 14, 3332 – 3341.
  • [41] Fine, W. T., & Kinney, W. D. 1971. Mathematical evaluation for controlling hazards. Journal of Safety Research, 3(4), 157−166.
  • [42] Primavera P6 Software, 2013. <http://www.oracle.com/us/products/applications/primavera/p6-professional-project-management/overview/index.html> (retrieved 04.02.13).
  • [43] MS Project, 2013. <https://products.office.com/en/project/project-and-portfolio-management-software> (retrieved 07.01.13).
  • [44] Kjellen, U., Preventation of accidents through experience feedback. London.GBR: CRC Press, 2000.

A Method For Determination of Accident Probability in Construction Industry

Year 2018, Volume: 29 Issue: 4, 8537 - 8561, 01.07.2018
https://doi.org/10.18400/tekderg.363613

Abstract

İnşaat Sektöründe Kaza Olasılıklarının Belirlenmesi İçin Bir Yöntem

İnşaat sektöründe iş güvenliği bir çok ülkede önem verilen bir konudur. Bu makalede inşaat sektöründe nesnel ve hesaplanabilir yeni bir kaza olasılığı yaklaşımı sunulmaktadır. Bu kaza olasılığı hesaplaması için 2000-2013 yılları arasında ülkemizde gerçekleşen gerçek inşaat kazaları ve istanbul çevresinde bulunan 20 inşaat projesinin planlama tabloları kullanılmıştır. Olasılıklar, Poisson dağılımı ile kaza sıklıkları ve maruziyet değerlerinden faydalanılarak hesaplanmıştır.  İnşaat sektörü gibi kazaların random gerçekleştiği sektörlerde iş kazalarını herhangi bir olasılık dağılımı ile temsil edilmesi oldukça güçtür. Ancak bu yaklaşım sayesinde kaza olasılıkları projeye başlanmadan evvel rahatlıkla belirlenebilecektir. 

References

  • [1] Zou, P., X.,W., Sunindijo, R., Y., 2013. Skills for managing safety risk, implementing safety task, and developing positive safety climate in construction project. Automation in Construction, 34, 92-100.
  • [2] CFOI. Census of Fatal Occupational Injuries Report, 2013.<http://www.bls.gov/iif/oshcfoi1.htm> (retrieved 12.05.14).
  • [3] Loosemore, M., Andonakis, N., 2007. Barriers to implementing OHS reforms – the experience of small subcontractors in the Australian construction industry. International Journal of Project Management 25, 579–588.
  • [4] Yi, J.-s., Kim Y.-w., Kim K.-a., Koo B. 2012. A suggested color scheme for reducing perception-related accidents on construction work sites. Accident Analysis and Prevention, 48, 185-192.
  • [5] ILO. International Labour Organization, Statistics and Database, LABORSTA, Occupational Injuries. <http://www.ilo.org/ilostat/faces/home/statisticaldata/data_by_subject?_adf.ctrl-state=vchypfgka_4&_afrLoop=598083992046714> (retrieved 06.04.2014)
  • [6] SII. Social Insurance Institution Occupational Accidents Statistics Report, 2012. 10.12.2013. Retrieved from http://www.isteguvenlik.tc/SGK2012IsKazaIstatistik.pdf (in Turkish).
  • [7] Gurcanli E., Bilir S., Sevim M., 2015. Activity Based Risk Assessment And Safety Cost Estimation For Residential Building Construction Projects. Safety Science, 2015, 80, 1–12, DOI: 10.1016/j.ssci.2015.07.002.
  • [8] Gurcanli G.E., Mungen U., 2013. Analysis of construction accidents in turkey and responsible parties. National Industrial Health, 51 (6), 581-595.
  • [9] Baradan, S., and Usmen, M. A. 2006. Comparative injury and fatality risk analysis of building trades. J. Constr. Eng. Manage., 132(5), 533–539.
  • [10] Gnoni, M. G., Saleh, J. H., 2017. Near-miss management systems and observability-in-depth: Handling safety incidents and accident precursors in light of safety principles. Safety Science, 91, 154-167.
  • [11] Gangolells, M., Casals, M., Forcada, N., Roca, X. and Fuertes, A. 2010. Mitigating construction safety risks using prevention through design. Journal of Safety Research, Vol. 41, 107-122.
  • [12] Gurcanli G.E., Mungen U., 2009. An occupational safety risk analysis method at construction sites using fuzzy sets. International J. of Industrial Ergonomics 39(2), 371-387.
  • [13] Hallowell, M. 2011. Risk-Based Framework for Safety Investment in Construction Organizations. J. Constr. Eng. Manage., 137(8), 592–599.
  • [14] Irumba R., 2014. Spatial analysis of construction accidents in Kampala, Uganda. Safety Science. 64. 109-120.
  • [15] Park, C. S., Kim, H. J., 2012. A framework for construction safety management and visualization system. Automation in Construction 33, 95–103.
  • [16] Raviv, R., Fishbain, B., Shapira, A., 2017a. Analyzing risk factors in crane-related near-miss and accident reports. Safety Science, 91, 192-205.
  • [17] Raviv, R., Fishbain, B., Shapira, A., 2017b. AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry. Safety Science, 91, 298-309.
  • [18] Zhang, S., Sulankivi, K., Kiviniemi, M., Romo, I., Eastman, C. M., Teizer, J., 2015. BIM-based fall hazard identification and prevention in construction safety planning. Safety Science, 72, 31-45.
  • [19] Zwetsloot, G.I.H.M., Kines, P., Wybo, J.L., Ruotsala, R., Drupsteen, L., Bezemer, R. A., 2017. Zero Accident Vision based strategies in organisations: Innovative perspectives. Safety Science, 91, 260-268.
  • [20] Van Nunen, K., Reniers, G., Ponnet, K., Cozzani, V., 2016. Major accident prevention decision-making: A large-scale survey-based analysis. Safety Science, 88, 242-250.
  • [21] Jocelyn, S., Chinniah, Y., Ouali, M., S., 2016. Contribution of dynamic experience feedback to the quantitative estimation of risks for preventing accidents: A proposed methodology for machinery safety. Safety Science, 88, 64-75.
  • [22] Wang, Y., Weidmann, U., A., Wang, W., 2017. Using catastrophe theory to describe railway system safety and discuss system risk concept. Safety Science, 91, 269-285.
  • [23] Brauer, R. L. 1994. Risk management and assessment. Safety and health for engineers, Van Nostrand Reinhold, New York, 543–572.
  • [24] Lee, S., and Halpin, D. 2003. Predictive tool for estimating accident risk. J. Constr. Eng. Manage., 129(4), 431–436.
  • [25] Jannadi, O., and Almishari, S. 2003. Risk assessment in construction. J. Constr. Eng. Manage., 129(5), 492–500.
  • [26] Hallowell, M. and Gambatese, J. 2009. Activity-Based Safety Risk Quantification for Concrete Formwork Construction. J. Constr. Eng. Manage., 135(10), 990–998.
  • [27] Sun, Y., Fang, D., Wang, S., Dai, M., and Lv, X. 2008. Safety risk identification and assessment for Beijing Olympic venues construction.”J. Manage. Eng., 24(1), 40–47.
  • [28] Mitropoulos, P., Namboodiri M., 2011. New method for measuring the safety risk of construction activities: task demand assessment. J. of Constr. Eng and Manage., 137( 1), 30-38.
  • [29] BLS. Bureau of Labor Statistics. 2013. <http://www.bls.gov/iif/#data> (retrieved 25.06.13).
  • [30] Casanovas, M. M., Armengou,J., Ramos, G. 2014. Occupational risk ındex for assessment of risk in construction work by activity. Journal of Construction Engineering and Management,Vol. 140, pp.04013035-1-04013035-9.
  • [31] Woodruff, J. M. 2005. Consequence and likelihood in risk estimation: A matter of balance in UK health and safety risk assessment practice. Safety Science, 43(5), 345-353.
  • [32] Birgönül, M. T., & Dikmen, İ. (1996). İnşaat projelerinin risk yönetimi. İMO teknik Dergi, 7(4), 1305-1326.
  • [33] Baradan, S., Akboğa, Ö., Çetinkaya, U., & Usmen, M. A. (2016). Ege Bölgesindeki İnşaat İş Kazalarının Sıklık ve Çapraz Tablolama Analizleri. İMO Teknik Dergi, 7345(7370), 448.
  • [34] Erginel, N., & TOPTANCI, Ş. (2017). İş Kazası Verilerinin Olasılık Dağılımları İle Modellenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 5(SI), 201-212.
  • [35] OSHA. 1971/97. Recording and reporting occupational injuries and illness. Regulations, Part 1904, Occupational Safety and Health Administration, U.S. Departmant of Labor, Washington, D.C.
  • [36] ILO. 1998. Meeting of Experts on Labour Statistics. Report MELSOI/1998/1, Geneva. Ingstad, O. and Bodsberg, L., 1989. CRIOP: A Scenario - Method for Evaluation of the Offshore Control Centre. SINTEF, Report No. STF75 A89028, Trondheim.
  • [37] Zhang, S., Teizer, J., Lee, J. K., Eastman, C. M., Venugopal, M., 2013. Building information modelling (BIM) and safety: automatic safety checking of construction models and schedules. Automation in Construction, 29,183-195.
  • [38] Borsos, A, Cafiso, S., D’Agostino, C., Miletics, D., 2016. Comparison of Italian and Hungarian black spot ranking. Transportation Research Procedia, 14, 2148 – 2157.
  • [39] Cafisoa, S.,Di Silvestroa, G., Di Guardoa, G., 2012. Application of Highway Safety Manual to Italian divided multilane highways. Procedia - Social and Behavioral Sciences 53, 911 – 920.
  • [40] Van Geelen, H., Volckaert, A., Sarrazin, R., Janssens, I., 2016. Evolutionary approach of accident concentration zones. Transportation Research Procedia, 14, 3332 – 3341.
  • [41] Fine, W. T., & Kinney, W. D. 1971. Mathematical evaluation for controlling hazards. Journal of Safety Research, 3(4), 157−166.
  • [42] Primavera P6 Software, 2013. <http://www.oracle.com/us/products/applications/primavera/p6-professional-project-management/overview/index.html> (retrieved 04.02.13).
  • [43] MS Project, 2013. <https://products.office.com/en/project/project-and-portfolio-management-software> (retrieved 07.01.13).
  • [44] Kjellen, U., Preventation of accidents through experience feedback. London.GBR: CRC Press, 2000.
There are 44 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

Senem Bilir

G. Emre Gürcanlı

Publication Date July 1, 2018
Submission Date December 7, 2017
Published in Issue Year 2018 Volume: 29 Issue: 4

Cite

APA Bilir, S., & Gürcanlı, G. E. (2018). A Method For Determination of Accident Probability in Construction Industry. Teknik Dergi, 29(4), 8537-8561. https://doi.org/10.18400/tekderg.363613
AMA Bilir S, Gürcanlı GE. A Method For Determination of Accident Probability in Construction Industry. Teknik Dergi. July 2018;29(4):8537-8561. doi:10.18400/tekderg.363613
Chicago Bilir, Senem, and G. Emre Gürcanlı. “A Method For Determination of Accident Probability in Construction Industry”. Teknik Dergi 29, no. 4 (July 2018): 8537-61. https://doi.org/10.18400/tekderg.363613.
EndNote Bilir S, Gürcanlı GE (July 1, 2018) A Method For Determination of Accident Probability in Construction Industry. Teknik Dergi 29 4 8537–8561.
IEEE S. Bilir and G. E. Gürcanlı, “A Method For Determination of Accident Probability in Construction Industry”, Teknik Dergi, vol. 29, no. 4, pp. 8537–8561, 2018, doi: 10.18400/tekderg.363613.
ISNAD Bilir, Senem - Gürcanlı, G. Emre. “A Method For Determination of Accident Probability in Construction Industry”. Teknik Dergi 29/4 (July 2018), 8537-8561. https://doi.org/10.18400/tekderg.363613.
JAMA Bilir S, Gürcanlı GE. A Method For Determination of Accident Probability in Construction Industry. Teknik Dergi. 2018;29:8537–8561.
MLA Bilir, Senem and G. Emre Gürcanlı. “A Method For Determination of Accident Probability in Construction Industry”. Teknik Dergi, vol. 29, no. 4, 2018, pp. 8537-61, doi:10.18400/tekderg.363613.
Vancouver Bilir S, Gürcanlı GE. A Method For Determination of Accident Probability in Construction Industry. Teknik Dergi. 2018;29(4):8537-61.

Cited By