Research Article
BibTex RIS Cite

İnşaat Sürecinin İş Çizelgelemesi, Yönetimi ve Optimizasyonu

Year 2022, Volume: 33 Issue: 6, 12945 - 12986, 01.11.2022
https://doi.org/10.18400/tekderg.981601

Abstract

Bu çalışmada bina inşaatı ile ilgili iş paketlerinin metrajı, adam.saat ve malzeme gereksinimi hesaplamaları, aktivite süresi ve ekip sayılarının belirlenmesi ile iş çizelgelemesinin oluşturulması işlem adımları yapının geometrisi, imalatlar ve temin edilebilen kaynaklar ile ilişkilendirilip formülleştirilmiştir. Hesaplanan metraj değerleri Türkiye Cumhuriyeti Çevre, Şehircilik ve İklim Değişikliği Bakanlığı’nın hazırladığı birim fiyat analizlerinde kullanılan poz listelerindeki malzeme, işçilik ve makine kullanımları ile ilişkilendirilerek tüm iş kalemleri için gereken malzeme, işçilik ve iş makinesi miktarları belirlenmiştir. Ayrıca iş kalemleri arasındaki fiziksel ve mantıksal ilişkiler göz önüne alınarak doğrusal iş programı ile inşaatın tamamlanma süresi tahmin edilmiştir. İnşaatta çalışan taşeronların farklı çalışma takvimi olabileceği göz önüne alınarak farklı günlerde tatil yaparak çalışılması durumunda işin kaç takvim günü süreceği hesaplanmıştır. Buna ek olarak hava koşulları ve Ramazan ayı gibi etkenlerin de iş verimine etkisi dikkate alınmıştır. Şantiyede aynı anda çalışabilecek işçi sayısı, taahhüt edilen proje teslim süresi ve gecikme cezasına göre en uygun iş programının hazırlanması Tavlama Benzetimli Genetik Algoritma (TBGA) ile gerçekleştirilmiştir. Bu çalışmada kaynak kısıtlı iş programı ve zaman maliyet ödünleşim problemleri oluşturulurken proje paydaşlarının farklı çalışma günlerinin olabileceği ve iş verimlerinin mevsim koşullarına göre değişebileceği dikkate alındığı için inşaat projelerinin iş programlarının, daha fazla etkeni içerir biçimde oluşturulabilmesi sağlanmıştır. Bu yaklaşım etkin yapım yönetimi tekniklerinin hızlı biçimde uygulanmasını sağlamaktadır.

Project Number

FYL-2020-2052

References

  • AbouRizk, S.M., Babey, G.M. Karumanasseri, G., Estimating the cost of capital projects: An emprical study of accuracy levels for municipal government projects, Canadian Journal of Civil Engineering, Vol.29, 653-661, 2002.
  • Dikmen, S. Ü., Özek S., Deprem bölgelerinde zemin sınıfının sanayi yapılarının maliyetine etkisi. Teknik Dergi, 22(108), 5543-5558, 2011.
  • Ilter, O., Celik, T., Investigation of organizational and regional perceptions on the changes in construction projects. Teknik Dergi, 32(6), 11257-11286, 2021.
  • Kocaman, E., Kuru, M., Çalış, G., İhale usulü ve sözleşme türünün yapım işi sözleşme bedeline etkisinin incelenmesi. Teknik Dergi, 31(1), 9789-9812, 2020.
  • Koç, K., Gurgun, A.P., Causal Relationships of Readability Risks in Construction Contracts. Teknik Dergi, 33(2), 2021.
  • Kuru, M., Çalış, G., İnşaat Projelerinde Kalite Performansını Etkileyen Faktörler: Türkiye’de Bir Alan Çalışması. Teknik Dergi, 33(6), 2022.
  • Ayhan M., Dikmen I., Birgonul M.T., Comparing performanes of machine learning techniques to forecast dispute resolutions. Teknik Dergi, 2022.
  • Demirdöğen, G., Işık, Z., Structural equation model of the factors affecting construction industry innovation success. Teknik Dergi, 32(2), 10717-10738, 2021.
  • Karaman, A.E., Sandal, K., Effect of Sub-Contractor Selection on Construction Project Success in Turkey. Teknik Dergi, 33(4), 12105 – 12118, 2022.
  • Budayan, C., Celik, T., Determination of Important Building Construction Adverse Impacts Creating Nuisances in Residential Areas on Neighbouring Community. Teknik Dergi, 32(2), 10611-10628, 2021.
  • Okudan, O., Budayan, C., Arayıcı, Y., Identification and Prioritization of Key Performance Indicators for the Construction Smal and Medium Enterprises, Teknik Dergi, 33(5), 2022.
  • Olsen, D., Taylor, J. M., Quantity Take-Off Using Building Information Modeling (BIM), and Its Limiting Factors. Procedia Engineering, 196, 1098-1105, 2017.
  • Monteiro, A., Martins, J.P., A survey on modeling guidelines for quantity takeoff-oriented BIM-based design. Automation in Construction, 35, 238-253, 2013.
  • Lee, S.K., Kim, K.R., Yu, J.H., BIM and ontology-based approach for building cost estimation, Automation in Construction, 41, 96-105, 2014.
  • Aram, S., Eastman, C., Sacks, R., A knowledge-based framework for quantity takeoff and cost estimation in the AEC industry using BIM, In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 31, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property, 2014, January.
  • Choi, J., Kim, H., Kim, I., Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage, Journal of Computational Design and Engineering, 2(1), 16-25, 2015.
  • Bettemir, Ö.H., Development of spreadsheet based quantity take-off and cost estimation application. Journal of Construction Engineering, Management & Innovation 1(3), 108-117, 2018.
  • Khosakitchalert, C., Yabuki, N., Fukuda, T., Automated modification of compound elements for accurate BIM-based quantity takeoff. Automation in Construction, 113, 103142, 2020.
  • Ergen, F., Bettemir, Ö.H., Development of BIM software with quantity take-off and visualization capabilities. Journal of Construction Engineering, Management & Innovation 5(1), 1-14, 10.31462/jcemi.2022.01001014, 2022.
  • Sepasgozar, S.M., Karimi, R., Shirowzhan, S., Mojtahedi, M., Ebrahimzadeh, S., McCarthy, D., Delay causes and emerging digital tools: A novel model of delay analysis, including integrated project delivery and PMBOK. Buildings, 9(9), 191, 2019.
  • Larsson, R., Rudberg, M., Impact of Weather Conditions on In Situ Concrete Wall Operations Using a Simulation-Based Approach. Journal of Construction Engineering and Management, 145(7), 05019009, 2019.
  • Maqsoom, A., Choudhry, R.M., Umer, M., Mehmood, T., Influencing factors indicating time delay in construction projects: Impact of firm size and experience. International Journal of Construction Management, 1-12, 2019.
  • Hurlimann, A.C., Warren-Myers, G., Browne, G.R., Is the Australian construction industry prepared for climate change? Building and Environment, 153, 128-137, 2019.
  • Russo, J.A., The economic impact of weather on the construction industry of the United States, Bulletin of the American Meteorological Society, 47(12), 967-972, 1966.
  • Smith, G.R., Hancher, D.E., Estimating precipitation impacts for scheduling, Journal of Construction Engineering and Management, 115(4), 552-566, 1989.
  • Li, S., New approach for optimization of overall construction schedule, Journal of construction engineering and management, 122(1), 7-13, 1996.
  • Apipattanavis, S., Sabol, K., Molenaar, K.R., Rajagopalan, B., Xi, Y., Blackard, B. Patil, S., Integrated framework for quantifying and predicting weather-related highway construction delays, Journal of Construction Engineering and Management, 136(11), 1160-1168, 2010.
  • Shan, Y., Goodrum, P.M., Integration of building information modeling and critical path method schedules to simulate the impact of temperature and humidity at the project level, Buildings, 4(3), 295-319, 2014.
  • Koehn, E., Brown, G., Climatic effects on construction, Journal of Construction Engineering and Management, 111(2), 129-137, 1985.
  • Jung, M., Park, M., Lee, H.S., Kim, H., Weather-delay simulation model based on vertical weather profile for high-rise building construction, Journal of Construction Engineering and Management, 142(6), 04016007, 2016.
  • Sönmez, M., Dikmen, S.Ü., Akbıyıklı, R., Time-cost relationships for superstructure projects in Turkey. Teknik Dergi, 31(2), 9869-9896, 2020.
  • Ahbab, C., Daneshvar, S., Celik, T., Cost and time management efficiency assessment for large road projects using data envelopment analysis. Teknik Dergi, 30(2), 8937-8959, 2019.
  • Wang, T., Abdallah, M., Clevenger, C., Monghasemi, S., Time–cost–quality trade-off analysis for planning construction projects. Engineering, Construction and Architectural Management, 2019.
  • Liu, S.S., Wang, C.J., Resource-constrained construction project scheduling model for profit maximization considering cash flow. Automation in Construction, Vol. 17, No. 8, pp. 966-974, DOI: 10.1016/j.autcon.2008.04.006, 2008.
  • Banihashemi, S.A., Khalilzadeh, M., Time-cost-quality-environmental impact trade-off resource-constrained Project scheduling problem with DEA approach. Engineering, Construction and Architectural Management, 2020.
  • Abdel-Basset, M., Ali, M., Atef, A., Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers & Industrial Engineering, 141, 106286, 2020.
  • Toğan, V., Eirgash, M.A., Time-Cost Trade-Off Optimization with a New Initial Population Approach. Teknik Dergi, 30(6), 9561-9580, 2018.
  • Eirgash, M.A., Toğan, V., Dede, T., A multi-objective decision making model based on TLBO for the time-cost trade-off problems. Structural Engineering and Mechanics, 71(2), 139-151, 2019.
  • Bettemir, Ö.H., Birgönül, M.T., Network Analysis Algorithm for the Solution of Discrete Time-Cost Trade-off Problem. KSCE Journal of Civil Engineering, (2017) 21(4):1047-1058, 2016. DOI 10.1007/s12205-016-1615-x.
  • Zhu, L., Lin, J., Wang, Z.J., A discrete oppositional multi-verse optimization algorithm for multi-skill resource constrained project scheduling problem. Applied Soft Computing, 85, 105805, 2019.
  • Lin, J., Zhu, L., Gao, K., A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications, 140, 112915, 2020.
  • Pellerin, R., Perrier, N., Berthaut, F., A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 280(2), 395-416, 2020.
  • Birjandi, A., Mousavi, S.M., Fuzzy resource-constrained project scheduling with multiple routes: A heuristic solution. Automation in Construction, 100, 84-102, 2019.
  • Laszczyk, M., Myszkowski, P.B., Improved selection in evolutionary multi–objective optimization of multi–skill resource–constrained project scheduling problem. Information Sciences, 481, 412-431, 2019.
  • Chakrabortty, R.K., Abbasi, A., Ryan, M.J., Multi‐mode resource‐constrained project scheduling using modified variable neighborhood search heuristic. International Transactions in Operational Research, 27(1), 138-167, 2020.
  • Tirkolaee, E.B., Goli, A., Hematian, M., Sangaiah, A.K., Han, T., Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms. Computing, 101(6), 547-570, 2019.
  • Creemers, S., The preemptive stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 277(1), 238-247, 2019.
  • Arab, H.G., Rayeni, A.M., Ghasemi, M.R., An effective improved multi-objective evolutionary algorithm (IMOEA) for solving constraint civil engineering optimization problems. Teknik Dergi, 32(2), 10645-10674, 2020.
  • Erzurum, T., Bettemir, Ö.H., Kaynak Dengeleme Probleminin Arama Uzayını Paralel Programlama ile Tarayarak Kesin Çözümü, Teknik Dergi, 32(3): 10767 – 10805, 2021.
  • Lotfi, R., Yadegari, Z., Hosseini, S.H., Khameneh, A.H., Tirkolaee, E.B., Weber, G.W., A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of industrial & management optimization, 18(1), 375, 2022.
  • Sharma, K., Trivedi, M.K., Latin hypercube sampling-based NSGA-III optimization model for multimode resource constrained time–cost–quality–safety trade-off in construction projects. International Journal of Construction Management, 1-11, 2020.
  • Taheri Amiri, M.J., Haghighi, F., Eshtehardian, E., Abessi, O., Multi-project time-cost optimization in critical chain with resource constraints. KSCE Journal of Civil Engineering, 22(10), 3738-3752, 2018.
  • Albayrak, G., Novel hybrid method in time–cost trade-off for resource-constrained construction projects. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(4), 1295-1307, 2020.
  • Banihashemi, S.A., Khalilzadeh, M., Time-cost-quality-environmental impact trade-off resource-constrained project scheduling problem with DEA approach. Engineering, Construction and Architectural Management, 2020.
  • Kannimuthu, M., Raphael, B., Palaneeswaran, E., Kuppuswamy, A., Optimizing time, cost and quality in multi-mode resource-constrained project scheduling. Built Environment Project and Asset Management, 2019.
  • Heravi, G., Moridi, S., Resource-constrained time-cost tradeoff for repetitive construction projects. KSCE Journal of Civil Engineering, 23(8), 3265-3274, 2019.
  • Al Alawi, M.K., Modeling, investigating, and quantification of the hot weather effects on construction projects in Oman. The Journal of Engineering Research [TJER], 17(2), 89-99, 2020.
  • Bettemir, Ö.H., Optimization of time-cost-resource trade-off problems in project scheduling using meta-heuristic algorithms, PhD Thesis, METU, Ankara, Türkiye, 2009.
  • Miriam, A.J., Saminathan, R., Chakaravarthi, S., Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud. Evolutionary Intelligence, 1-7, 2020.
  • Hwang, S.F. He, R.S., Improving Real-Parameter Genetic Algorithm with Simulated Annealing for Engineering Problems. Adv. Eng. Softw., 37(6), 406 – 418, 2006.
  • Toklu, Y.C., Application of genetic algorithms to construction scheduling with or without resource constraints. Canadian Journal of Civil Engineering, 29(3), 421-429, 2002.
  • Oral, M., Bazaati, S., Aydinli, S., Oral, E., Construction site layout planning: Application of multi-objective particle swarm optimization. Teknik Dergi, 29(6), 8691-8713, 2018.
  • Gökçe, Ş., Zorluer İ., İnşaat Sektöründeki İş kazalarının Hata Ağacı Analizi ile Değerlendirilmesi. Teknik Dergi, 33(6), 2022.
  • Bettemir, Ö.H., Gündüz, E., Akkurt, O., Hilal, E., Arslan, M.A., İnşaat işlerinin iş programina bağli nakit akişi değişkenliğinin saptanmasi ve düzenlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(1), 211-223, 2019.
  • Bettemir, Ö.H, Yücel, T., Zaman maliyet ödünleşim probleminin en az insan müdahalesi ile oluşturulup çözülmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 461-480, 2021.
  • Halmetoja, E., Lepkova N., Utilising Building Information Models in Facility Maintenance and Operations Teknik Dergi, 2022.
  • Gürgün, A.P., Koç, K., Atabay, Ş., Yapı bilgi modellemesi kullanımının sürdürülebilir yeşil bina projeleri üzerine etkileri. Teknik Dergi, 33(3), 11857-11886, 2022.

Scheduling, Management and Optimization of Construction Process

Year 2022, Volume: 33 Issue: 6, 12945 - 12986, 01.11.2022
https://doi.org/10.18400/tekderg.981601

Abstract

In this study, computation of quantity take-off, man.hour and material requirements; determination of activity durations and crew sizes; and preparation of construction schedule related with the construction of a building are formulated by associating them with the geometry of the building, the construction items, and the available resources. Obtained quantity take-off values is joined with the item codes of the unit price analysis of Ministry of Environment, Urbanization and Climate Change of Republic of Türkiye and after this operation quantities of material, workmanship, and machinery requirements are computed by the corresponding unit price analysis data. Line-of-Balance schedule is prepared by considering the physical and logical constraints between the activities and construction duration is estimated. Construction project can be executed by different subcontractors which may have diverse workdays and the developed application computes the project duration in terms of calendar days by considering the different work calendars of the construction crews. Moreover work efficiency is estimated by considering the effects of seasonal conditions, and month Ramadan. Optimization of construction schedule is executed by Genetic Algorithm with Simulated Annealing (GASA) according to the restrictions on the construction duration and the maximum available labor as well as the delay penalty. In this study resource constrained project scheduling and time cost trade-off problems are formulated by taking the possibilities of the project stakeholders may have different workdays and the job efficiencies may deviate according to the seasonal conditions into account which makes preparation of construction schedules considering more factors possible. This approach provides fast implementation of efficient construction management techniques.

Supporting Institution

Inonu University

Project Number

FYL-2020-2052

Thanks

This study is granted by the FYL-2020-2052 coded scientific research project by the Inonu University Scientific Research Projects Coordinator.

References

  • AbouRizk, S.M., Babey, G.M. Karumanasseri, G., Estimating the cost of capital projects: An emprical study of accuracy levels for municipal government projects, Canadian Journal of Civil Engineering, Vol.29, 653-661, 2002.
  • Dikmen, S. Ü., Özek S., Deprem bölgelerinde zemin sınıfının sanayi yapılarının maliyetine etkisi. Teknik Dergi, 22(108), 5543-5558, 2011.
  • Ilter, O., Celik, T., Investigation of organizational and regional perceptions on the changes in construction projects. Teknik Dergi, 32(6), 11257-11286, 2021.
  • Kocaman, E., Kuru, M., Çalış, G., İhale usulü ve sözleşme türünün yapım işi sözleşme bedeline etkisinin incelenmesi. Teknik Dergi, 31(1), 9789-9812, 2020.
  • Koç, K., Gurgun, A.P., Causal Relationships of Readability Risks in Construction Contracts. Teknik Dergi, 33(2), 2021.
  • Kuru, M., Çalış, G., İnşaat Projelerinde Kalite Performansını Etkileyen Faktörler: Türkiye’de Bir Alan Çalışması. Teknik Dergi, 33(6), 2022.
  • Ayhan M., Dikmen I., Birgonul M.T., Comparing performanes of machine learning techniques to forecast dispute resolutions. Teknik Dergi, 2022.
  • Demirdöğen, G., Işık, Z., Structural equation model of the factors affecting construction industry innovation success. Teknik Dergi, 32(2), 10717-10738, 2021.
  • Karaman, A.E., Sandal, K., Effect of Sub-Contractor Selection on Construction Project Success in Turkey. Teknik Dergi, 33(4), 12105 – 12118, 2022.
  • Budayan, C., Celik, T., Determination of Important Building Construction Adverse Impacts Creating Nuisances in Residential Areas on Neighbouring Community. Teknik Dergi, 32(2), 10611-10628, 2021.
  • Okudan, O., Budayan, C., Arayıcı, Y., Identification and Prioritization of Key Performance Indicators for the Construction Smal and Medium Enterprises, Teknik Dergi, 33(5), 2022.
  • Olsen, D., Taylor, J. M., Quantity Take-Off Using Building Information Modeling (BIM), and Its Limiting Factors. Procedia Engineering, 196, 1098-1105, 2017.
  • Monteiro, A., Martins, J.P., A survey on modeling guidelines for quantity takeoff-oriented BIM-based design. Automation in Construction, 35, 238-253, 2013.
  • Lee, S.K., Kim, K.R., Yu, J.H., BIM and ontology-based approach for building cost estimation, Automation in Construction, 41, 96-105, 2014.
  • Aram, S., Eastman, C., Sacks, R., A knowledge-based framework for quantity takeoff and cost estimation in the AEC industry using BIM, In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 31, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property, 2014, January.
  • Choi, J., Kim, H., Kim, I., Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage, Journal of Computational Design and Engineering, 2(1), 16-25, 2015.
  • Bettemir, Ö.H., Development of spreadsheet based quantity take-off and cost estimation application. Journal of Construction Engineering, Management & Innovation 1(3), 108-117, 2018.
  • Khosakitchalert, C., Yabuki, N., Fukuda, T., Automated modification of compound elements for accurate BIM-based quantity takeoff. Automation in Construction, 113, 103142, 2020.
  • Ergen, F., Bettemir, Ö.H., Development of BIM software with quantity take-off and visualization capabilities. Journal of Construction Engineering, Management & Innovation 5(1), 1-14, 10.31462/jcemi.2022.01001014, 2022.
  • Sepasgozar, S.M., Karimi, R., Shirowzhan, S., Mojtahedi, M., Ebrahimzadeh, S., McCarthy, D., Delay causes and emerging digital tools: A novel model of delay analysis, including integrated project delivery and PMBOK. Buildings, 9(9), 191, 2019.
  • Larsson, R., Rudberg, M., Impact of Weather Conditions on In Situ Concrete Wall Operations Using a Simulation-Based Approach. Journal of Construction Engineering and Management, 145(7), 05019009, 2019.
  • Maqsoom, A., Choudhry, R.M., Umer, M., Mehmood, T., Influencing factors indicating time delay in construction projects: Impact of firm size and experience. International Journal of Construction Management, 1-12, 2019.
  • Hurlimann, A.C., Warren-Myers, G., Browne, G.R., Is the Australian construction industry prepared for climate change? Building and Environment, 153, 128-137, 2019.
  • Russo, J.A., The economic impact of weather on the construction industry of the United States, Bulletin of the American Meteorological Society, 47(12), 967-972, 1966.
  • Smith, G.R., Hancher, D.E., Estimating precipitation impacts for scheduling, Journal of Construction Engineering and Management, 115(4), 552-566, 1989.
  • Li, S., New approach for optimization of overall construction schedule, Journal of construction engineering and management, 122(1), 7-13, 1996.
  • Apipattanavis, S., Sabol, K., Molenaar, K.R., Rajagopalan, B., Xi, Y., Blackard, B. Patil, S., Integrated framework for quantifying and predicting weather-related highway construction delays, Journal of Construction Engineering and Management, 136(11), 1160-1168, 2010.
  • Shan, Y., Goodrum, P.M., Integration of building information modeling and critical path method schedules to simulate the impact of temperature and humidity at the project level, Buildings, 4(3), 295-319, 2014.
  • Koehn, E., Brown, G., Climatic effects on construction, Journal of Construction Engineering and Management, 111(2), 129-137, 1985.
  • Jung, M., Park, M., Lee, H.S., Kim, H., Weather-delay simulation model based on vertical weather profile for high-rise building construction, Journal of Construction Engineering and Management, 142(6), 04016007, 2016.
  • Sönmez, M., Dikmen, S.Ü., Akbıyıklı, R., Time-cost relationships for superstructure projects in Turkey. Teknik Dergi, 31(2), 9869-9896, 2020.
  • Ahbab, C., Daneshvar, S., Celik, T., Cost and time management efficiency assessment for large road projects using data envelopment analysis. Teknik Dergi, 30(2), 8937-8959, 2019.
  • Wang, T., Abdallah, M., Clevenger, C., Monghasemi, S., Time–cost–quality trade-off analysis for planning construction projects. Engineering, Construction and Architectural Management, 2019.
  • Liu, S.S., Wang, C.J., Resource-constrained construction project scheduling model for profit maximization considering cash flow. Automation in Construction, Vol. 17, No. 8, pp. 966-974, DOI: 10.1016/j.autcon.2008.04.006, 2008.
  • Banihashemi, S.A., Khalilzadeh, M., Time-cost-quality-environmental impact trade-off resource-constrained Project scheduling problem with DEA approach. Engineering, Construction and Architectural Management, 2020.
  • Abdel-Basset, M., Ali, M., Atef, A., Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers & Industrial Engineering, 141, 106286, 2020.
  • Toğan, V., Eirgash, M.A., Time-Cost Trade-Off Optimization with a New Initial Population Approach. Teknik Dergi, 30(6), 9561-9580, 2018.
  • Eirgash, M.A., Toğan, V., Dede, T., A multi-objective decision making model based on TLBO for the time-cost trade-off problems. Structural Engineering and Mechanics, 71(2), 139-151, 2019.
  • Bettemir, Ö.H., Birgönül, M.T., Network Analysis Algorithm for the Solution of Discrete Time-Cost Trade-off Problem. KSCE Journal of Civil Engineering, (2017) 21(4):1047-1058, 2016. DOI 10.1007/s12205-016-1615-x.
  • Zhu, L., Lin, J., Wang, Z.J., A discrete oppositional multi-verse optimization algorithm for multi-skill resource constrained project scheduling problem. Applied Soft Computing, 85, 105805, 2019.
  • Lin, J., Zhu, L., Gao, K., A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications, 140, 112915, 2020.
  • Pellerin, R., Perrier, N., Berthaut, F., A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 280(2), 395-416, 2020.
  • Birjandi, A., Mousavi, S.M., Fuzzy resource-constrained project scheduling with multiple routes: A heuristic solution. Automation in Construction, 100, 84-102, 2019.
  • Laszczyk, M., Myszkowski, P.B., Improved selection in evolutionary multi–objective optimization of multi–skill resource–constrained project scheduling problem. Information Sciences, 481, 412-431, 2019.
  • Chakrabortty, R.K., Abbasi, A., Ryan, M.J., Multi‐mode resource‐constrained project scheduling using modified variable neighborhood search heuristic. International Transactions in Operational Research, 27(1), 138-167, 2020.
  • Tirkolaee, E.B., Goli, A., Hematian, M., Sangaiah, A.K., Han, T., Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms. Computing, 101(6), 547-570, 2019.
  • Creemers, S., The preemptive stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 277(1), 238-247, 2019.
  • Arab, H.G., Rayeni, A.M., Ghasemi, M.R., An effective improved multi-objective evolutionary algorithm (IMOEA) for solving constraint civil engineering optimization problems. Teknik Dergi, 32(2), 10645-10674, 2020.
  • Erzurum, T., Bettemir, Ö.H., Kaynak Dengeleme Probleminin Arama Uzayını Paralel Programlama ile Tarayarak Kesin Çözümü, Teknik Dergi, 32(3): 10767 – 10805, 2021.
  • Lotfi, R., Yadegari, Z., Hosseini, S.H., Khameneh, A.H., Tirkolaee, E.B., Weber, G.W., A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of industrial & management optimization, 18(1), 375, 2022.
  • Sharma, K., Trivedi, M.K., Latin hypercube sampling-based NSGA-III optimization model for multimode resource constrained time–cost–quality–safety trade-off in construction projects. International Journal of Construction Management, 1-11, 2020.
  • Taheri Amiri, M.J., Haghighi, F., Eshtehardian, E., Abessi, O., Multi-project time-cost optimization in critical chain with resource constraints. KSCE Journal of Civil Engineering, 22(10), 3738-3752, 2018.
  • Albayrak, G., Novel hybrid method in time–cost trade-off for resource-constrained construction projects. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(4), 1295-1307, 2020.
  • Banihashemi, S.A., Khalilzadeh, M., Time-cost-quality-environmental impact trade-off resource-constrained project scheduling problem with DEA approach. Engineering, Construction and Architectural Management, 2020.
  • Kannimuthu, M., Raphael, B., Palaneeswaran, E., Kuppuswamy, A., Optimizing time, cost and quality in multi-mode resource-constrained project scheduling. Built Environment Project and Asset Management, 2019.
  • Heravi, G., Moridi, S., Resource-constrained time-cost tradeoff for repetitive construction projects. KSCE Journal of Civil Engineering, 23(8), 3265-3274, 2019.
  • Al Alawi, M.K., Modeling, investigating, and quantification of the hot weather effects on construction projects in Oman. The Journal of Engineering Research [TJER], 17(2), 89-99, 2020.
  • Bettemir, Ö.H., Optimization of time-cost-resource trade-off problems in project scheduling using meta-heuristic algorithms, PhD Thesis, METU, Ankara, Türkiye, 2009.
  • Miriam, A.J., Saminathan, R., Chakaravarthi, S., Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud. Evolutionary Intelligence, 1-7, 2020.
  • Hwang, S.F. He, R.S., Improving Real-Parameter Genetic Algorithm with Simulated Annealing for Engineering Problems. Adv. Eng. Softw., 37(6), 406 – 418, 2006.
  • Toklu, Y.C., Application of genetic algorithms to construction scheduling with or without resource constraints. Canadian Journal of Civil Engineering, 29(3), 421-429, 2002.
  • Oral, M., Bazaati, S., Aydinli, S., Oral, E., Construction site layout planning: Application of multi-objective particle swarm optimization. Teknik Dergi, 29(6), 8691-8713, 2018.
  • Gökçe, Ş., Zorluer İ., İnşaat Sektöründeki İş kazalarının Hata Ağacı Analizi ile Değerlendirilmesi. Teknik Dergi, 33(6), 2022.
  • Bettemir, Ö.H., Gündüz, E., Akkurt, O., Hilal, E., Arslan, M.A., İnşaat işlerinin iş programina bağli nakit akişi değişkenliğinin saptanmasi ve düzenlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(1), 211-223, 2019.
  • Bettemir, Ö.H, Yücel, T., Zaman maliyet ödünleşim probleminin en az insan müdahalesi ile oluşturulup çözülmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 461-480, 2021.
  • Halmetoja, E., Lepkova N., Utilising Building Information Models in Facility Maintenance and Operations Teknik Dergi, 2022.
  • Gürgün, A.P., Koç, K., Atabay, Ş., Yapı bilgi modellemesi kullanımının sürdürülebilir yeşil bina projeleri üzerine etkileri. Teknik Dergi, 33(3), 11857-11886, 2022.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Onder Bettemir 0000-0002-5692-7708

Ömer Bulak 0000-0003-0915-2708

Project Number FYL-2020-2052
Publication Date November 1, 2022
Submission Date August 11, 2021
Published in Issue Year 2022 Volume: 33 Issue: 6

Cite

APA Bettemir, O., & Bulak, Ö. (2022). İnşaat Sürecinin İş Çizelgelemesi, Yönetimi ve Optimizasyonu. Teknik Dergi, 33(6), 12945-12986. https://doi.org/10.18400/tekderg.981601
AMA Bettemir O, Bulak Ö. İnşaat Sürecinin İş Çizelgelemesi, Yönetimi ve Optimizasyonu. Teknik Dergi. November 2022;33(6):12945-12986. doi:10.18400/tekderg.981601
Chicago Bettemir, Onder, and Ömer Bulak. “İnşaat Sürecinin İş Çizelgelemesi, Yönetimi Ve Optimizasyonu”. Teknik Dergi 33, no. 6 (November 2022): 12945-86. https://doi.org/10.18400/tekderg.981601.
EndNote Bettemir O, Bulak Ö (November 1, 2022) İnşaat Sürecinin İş Çizelgelemesi, Yönetimi ve Optimizasyonu. Teknik Dergi 33 6 12945–12986.
IEEE O. Bettemir and Ö. Bulak, “İnşaat Sürecinin İş Çizelgelemesi, Yönetimi ve Optimizasyonu”, Teknik Dergi, vol. 33, no. 6, pp. 12945–12986, 2022, doi: 10.18400/tekderg.981601.
ISNAD Bettemir, Onder - Bulak, Ömer. “İnşaat Sürecinin İş Çizelgelemesi, Yönetimi Ve Optimizasyonu”. Teknik Dergi 33/6 (November 2022), 12945-12986. https://doi.org/10.18400/tekderg.981601.
JAMA Bettemir O, Bulak Ö. İnşaat Sürecinin İş Çizelgelemesi, Yönetimi ve Optimizasyonu. Teknik Dergi. 2022;33:12945–12986.
MLA Bettemir, Onder and Ömer Bulak. “İnşaat Sürecinin İş Çizelgelemesi, Yönetimi Ve Optimizasyonu”. Teknik Dergi, vol. 33, no. 6, 2022, pp. 12945-86, doi:10.18400/tekderg.981601.
Vancouver Bettemir O, Bulak Ö. İnşaat Sürecinin İş Çizelgelemesi, Yönetimi ve Optimizasyonu. Teknik Dergi. 2022;33(6):12945-86.