Research Article
BibTex RIS Cite

Cotton Fabrics Finished by Natural and Sulfated β-Cyclodextrin Inclusion Complexes of Silver Nanoparticles for Biomedical Applications

Year 2023, , 375 - 387, 31.12.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1175598

Abstract

In this study, it was aimed to compare the properties of cotton fabrics finished by natural and sulfated β-cyclodextrin complexes of silver nanoparticles (AgNPs) for biomedical applications. For this aim, sulfated β-cyclodextrin (S-β-CD) was obtained from β-CD and they were applied to cotton fabrics with and without EDTA crosslinking agent. Then, all the fabrics were treated with AgNPs and inclusion complexes were formed. Within the scope of the study, antibacterial activity, washing stability, add-on, tensile strength, handle and color change of the samples were tested and compared to each other. In addition, SEM and EDX were performed on the samples to characterize the effects of finishing, FT-IR analysis was performed to characterize the chemical structures of β-CD and S-β-CD powders and XRD analysis was performed to characterize the AgNPs. As a result of the study, the treatment of S-β-CD complex with AgNPs and crosslinking this complex to cotton sample by means of EDTA was found to be the most favorable method.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Abdel-Halim ES, Abdel-Mohdy FA, Fouda MMG, El-Sawy SM, Hamdy IA, Al-Deyab SS. 2011. Antimicrobial activity of monochlorotriazinyl-β-cyclodextrin/chlorohexidin diacetate finished cotton fabrics. Carbohydrate Polymers 86(3), 1389–1394.
  • 2. Tayyar AE, Tetik GD, Abak E. 2018. Evaluation of antibacterial, mechanical, and comfort properties of woven fabrics consist of cotton, bamboo, and silver fibers. Tekstil ve Konfeksiyon 28(4), 304-310.
  • 3. Paksoy N, Konukoğlu S, Ayar LG, Batcik C, Aydın H. 2021. Investigation of the effect of the use of bamboo and silver yarn on antibacterial activity in towel fabric. Tekstil ve Konfeksiyon 31(3), 195-202.
  • 4. Eid AM, Fouda A, Niedbała G, Hassan SED, Salem SS, Abdo AM, Hetta HF, Shaheen TI. 2020. Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics 9(10), 641.
  • 5. Yılmaz F, Bahtiyari MI. 2021. Investigation of the disinfection effect of some environmental friendly applications on cotton fabrics. Journal of Natural Fibers 1-9.
  • 6. Li L, Duan P, Xu Q, Zhang X, Chen J, Fu F, Diao H, Liu X. 2020. The oligomer polyacrylic acid effect on immobilization of silver nanoparticles onto cotton fabric to achieve a durably antibacterial function. Fibers and Polymers 21(9), 1965-1974.
  • 7. Andra S, kumar Balu S, Jeevanandam J, Muthalagu M, Danquah MK. 2021. Surface cationization of cellulose to enhance durable antibacterial finish in phytosynthesized silver nanoparticle treated cotton fabric. Cellulose 28, 5895–5910.
  • 8. Arik B. 2021. Common and nano-antimicrobial textile finishes. In: Mondal MIH (ed) Antimicrobial Textiles From Natural Resources. Chap. 3. Woodhead Publishing, pp 87-117.
  • 9. Ogunsona EO, Muthuraj R, Ojogbo E, Valerio O, Mekonnen TH. 2020. Engineered nanomaterials for antimicrobial applications: a review. Applied Materials Today 18, 100473.
  • 10. Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SED, Eid AM, Shaheen TI, Elkelish A, Fouda A. 2020. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10(10), 2082.
  • 11. George C, Kuriakose S, Prakashkumar B, Mathew T. 2010. Synthesis, characterisation and antibacterial applications of water-soluble, silver nanoparticle encapsulated β-cyclodextrin. Supramolecular Chemistry 22(9), 511–516.
  • 12. Jaiswal S, Duffy B, Jaiswal AK, Stobie N, McHale P. 2010. Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. International Journal of Antimicrobial Agents 36(3), 280–283.
  • 13. Ravindra S, Mohan YM, Reddy NN, Raju KM. 2010. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via green approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects 367, 31–40.
  • 14. Andrade PF, de Faria AF, da Silva DS, Bonacin JA, do Carmo Goncalves M. 2014. Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids and Surfaces B:Biointerfaces 118, 289–297.
  • 15. Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y. 2015. Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydrate Polymers 134, 128–135.
  • 16. Heravi MEM. 2020. Effects of hydrodynamic diameter of nanoparticles on antibacterial activity and durability of Ag-treated cotton fabrics. Fibers and Polymers 21(6), 1173-1179.
  • 17. Begam R, Joshi M, Purwar R. 2021. Antimicrobial finishing of cotton textiles using silver intercalated clay. Fibers and Polymers 23(1), 148-154.
  • 18. Hebeish A, El-Shafei A, Sharaf S, Zaghloul S. 2014. In situ formation of silver nanoparticles for multifunctional cotton containing cyclodextrin. Carbohydrate Polymers 103, 442–447.
  • 19. Ibrahim HM, Hassan MS. 2016. Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydrate Polymers 151, 841–850.
  • 20. Popescu V, Petrea M, Popescu A. 2021. Multifunctional finishing of cotton with compounds derived from MCT-β-CD and quantification of effects using MLR statistical analysis. Polymers 13(3), 410.
  • 21. Zhang S, Zhang T, He J, Dong X. 2021. Effect of AgNP distribution on the cotton fiber on the durability of antibacterial cotton fabrics. Cellulose 28, 9489–9504.
  • 22. Hebeish A, El-Shafei A, Sharaf S, Zaghloul S. 2014. Development of improved nanosilver-based antibacterial textiles via synthesis of versatile chemically modified cotton fabric. Carbohydrate Polymers 113, 455–462.
  • 23. Hedayati N, Montazer M, Mahmoudirad M, Toliyat T. 2021. Cotton fabric incorporated with β-cyclodextrin/ ketoconazole/Ag NPs generating outstanding antifungal and antibacterial performances. Cellulose 28, 8095–8113.
  • 24. Ma Z, Liu J, Shen G, Zheng X, Pei Y, Tang K. 2021. In-situ synthesis and immobilization of silver nanoparticles on microfibrillated cellulose for long-term antibacterial applications. Cellulose 28, 6287–6303.
  • 25. Pergal MV, Dojčinović BP, Nikodinović-Runić J, Dražić G, Zabukovec Logar N, Ostojić S, Antić B. 2022. Synthesis, physicochemical, and antimicrobial characteristics of novel poly (urethane-siloxane) network/silver ferrite nanocomposites. Journal of Materials Science 57(16), 7827-7848.
  • 26. Nogueira FÁS. 2018. Covalent and non-covalent strategies for surface modification of different textile materials with antimicrobial properties. PhD thesis, Universidade da Beira Interior, Portugal.
  • 27. Ru J, Qian X, Wang Y. 2018. Study on antibacterial finishing of cotton fabric with silver nanoparticles stabilized by nanoliposomes. Cellulose 25(9), 5443-5454.
  • 28. Malini S, Kumar SV, Hariharan R, Bharathi AP, Devi PR, Hemananthan E. 2020. Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Materials Today: Proceedings 21, 828–832.
  • 29. Popescu O, Dunca S, Grigoriu A. 2013. Antibacterial action of silver applied on cellulose fibers grafted with monochlorotriazinyl-β-cyclodextrin. Cellulose Chemistry and Technology 47(3–4), 247–255.
  • 30. Sathiya Priya R, Geetha D, Ramesh PS. 2013. Antibacterial activity of nano-silver capped by β-cyclodextrin. Carbon Science and Technology 5(1), 197–202.
  • 31. Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. 2018. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research 9, 1-16.
  • 32. Nowak M, Tolińska A, Marciniak L, Skrobańska M, Tylkowski B, Frankowski M, Kaczmarek MT, Jastrzab R. 2022. Green preparation and characterization of silver nanocolloids used as antibacterial material in soap. Journal of Materials Science 57(18), 8481-8488.
  • 33. Sharma P, Pant S, Rai S, Yadav RB, Sharma S, Dave V. 2018. Green synthesis and characterization of silver nanoparticles by Allium cepa L. to produce silver nano‐coated fabric and their antimicrobial evaluation. Applied Organometallic Chemistry 32(3), e4146.
  • 34. Nahar K, Rahaman MdH, Khan GMA, Islam MdK, Al-Reza SMd. 2021. Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential. Asian Journal of Green Chemistry 5(1), 135-150.
  • 35. Reyes-Melo ME, Miranda-Valdez IY, Puente-Córdova JG, Camarillo-Hernández CA, López-Walle B. 2021. Fabrication and characterization of a biocompatible hybrid film based on silver nanoparticle/ethyl cellulose polymer. Cellulose 28(14), 9227-9240.
  • 36. Alavi M, Varma RS. 2021. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose 28, 8295–8311.
  • 37. Al Masud MA, Shaikh H, Alam MS, Karim MM, Momin MA, Islam MA, Khan GMA. 2021. Green synthesis of silk sericin-embedded silver nanoparticles and their antibacterial application against multidrug-resistant pathogens. Journal of Genetic Engineering and Biotechnology 19(1), 74.
  • 38. Szejtli J. 2013. Cyclodextrin Technology. Vol. 1. Springer Science & Business Media, 450p.
  • 39. Popr MM. 2016. Synthesis of cyclodextrin derivatives for practical applications. PhD thesis, Charles University, Prague, Czech Republic.
  • 40. Setthayanond J, Sodsangchan C, Suwanruji P, Tooptompong P, Avinc O. 2017. Influence of MCT-β-cyclodextrin treatment on strength, reactive dyeing and third-hand cigarette smoke odor release properties of cotton fabric. Cellulose 24, 5233–5250.
  • 41. Carneiro SB, Costa Duarte FÍ, Heimfarth L, Siqueira Quintans JDS, Quintans-Júnior LJ, Veiga Júnior VFD, Neves de Lima ÁA. 2019. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. International Journal of Molecular Sciences 20(3), 642.
  • 42. Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Curto Valle RDCS, Borges Valle JA, Scacchetti FAP, Tessaro AL. 2020. The role of β-cyclodextrin in the textile industry-Review. Molecules 25(16), 3624.
  • 43. Tarannum N, Kumar D. 2020. Synthesis, characterization and applications of copolymer of β–cyclodextrin: a review. Journal of Polymer Research 27(89), 1-30.
  • 44. El-Sayed E, Othman HA, Hassabo AG. 2021. Cyclodextrin usage in textile industry. Journal of Textiles, Coloration and Polymer Science 18(2), 111-119.
  • 45. Feng Y, Chen S, Li Z, Gu Z, Xu S, Ban X, Hong Y, Cheng L, Li C. 2021. A review of controlled release from cyclodextrins: release methods, release systems and application. Critical Reviews in Food Science and Nutrition 1-13.
  • 46. Sun XZ, Wu JZ, Wang HD, Guan C. 2021. Thermosensitive cotton textile loaded with cyclodextrin-complexed curcumin as a wound dressing. Fibers and Polymers 22(9), 2475-2482.
  • 47. Radu CD, Parteni O, Ochiuz L. 2016. Applications of cyclodextrins in medical textiles. Journal of Controlled Release 224, 146–157.
  • 48. Liu J, Ma X, Shi W, Xing J, Ma C. 2020. Grafting modification of natural fibres with cyclodextrin. Fibres & Textiles in Eastern Europe 28, 15-23.
  • 49. Arruda TR, Marques CS, Soares NFF. 2021. Native cyclodextrins and their derivatives as potential additives for food packaging: A review. Polysaccharides 2(4), 825-842.
  • 50. Zhou LY, Wang YH, Pan RR, Wan ZH, Zhang MJ, Liu YT. 2022. Optimized-dose lidocaine-loaded sulfobutyl ether β-cyclodextrin/hyaluronic acid hydrogels to improve physical, chemical, and pharmacological evaluation for local anesthetics and drug delivery systems. Journal of Materials Science 57(13), 7068-7084.
  • 51. Řezanka M. 2018. Synthesis of cyclodextrin derivatives. In: Fourmentin S, Crini G, Lichtfouse E (eds) Cyclodextrin Fundamentals, Reactivity And Analysis, Environmental Chemistry For A Sustainable World. Vol. 16. Springer, Cham, pp 57-103.
  • 52. Liu J, Ma X, Shi W, Xing J. 2021. Evaluation of enhanced UV protection property of dyed cotton fabrics based on inclusion complex of β-cyclodextrin with natural coumarin extracted from Cortex fraxini. Fibers and Polymers 22(6), 1569-1579.
  • 53. Aubert-Viard F, Mogrovejo-Valdivia A, Tabary N, Maton M, Chai F, Neut C, Martel B, Blanchemain N. 2019. Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application. Materials Science and Engineering: C 100, 554-563.
  • 54. Selvam S, Gandhi RR, Suresh J, Gowri S, Ravikumar S, Sundrarajan M. 2012. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. International Journal of Pharmaceutics 434(1–2), 366–374.
  • 55. Yang T. 2009. Poly(vinyl alcohol)-sulfated β-cyclodextrin for direct methanol fuel cell applications. International Journal of Hydrogen Energy 34(16), 6917–6924.
  • 56. Montazer M, Alimohammadi F, Shamei A, Rahimi MK. 2012. In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydrate Polymers 87(2), 1706-1712.
Year 2023, , 375 - 387, 31.12.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1175598

Abstract

Project Number

-

References

  • 1. Abdel-Halim ES, Abdel-Mohdy FA, Fouda MMG, El-Sawy SM, Hamdy IA, Al-Deyab SS. 2011. Antimicrobial activity of monochlorotriazinyl-β-cyclodextrin/chlorohexidin diacetate finished cotton fabrics. Carbohydrate Polymers 86(3), 1389–1394.
  • 2. Tayyar AE, Tetik GD, Abak E. 2018. Evaluation of antibacterial, mechanical, and comfort properties of woven fabrics consist of cotton, bamboo, and silver fibers. Tekstil ve Konfeksiyon 28(4), 304-310.
  • 3. Paksoy N, Konukoğlu S, Ayar LG, Batcik C, Aydın H. 2021. Investigation of the effect of the use of bamboo and silver yarn on antibacterial activity in towel fabric. Tekstil ve Konfeksiyon 31(3), 195-202.
  • 4. Eid AM, Fouda A, Niedbała G, Hassan SED, Salem SS, Abdo AM, Hetta HF, Shaheen TI. 2020. Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics 9(10), 641.
  • 5. Yılmaz F, Bahtiyari MI. 2021. Investigation of the disinfection effect of some environmental friendly applications on cotton fabrics. Journal of Natural Fibers 1-9.
  • 6. Li L, Duan P, Xu Q, Zhang X, Chen J, Fu F, Diao H, Liu X. 2020. The oligomer polyacrylic acid effect on immobilization of silver nanoparticles onto cotton fabric to achieve a durably antibacterial function. Fibers and Polymers 21(9), 1965-1974.
  • 7. Andra S, kumar Balu S, Jeevanandam J, Muthalagu M, Danquah MK. 2021. Surface cationization of cellulose to enhance durable antibacterial finish in phytosynthesized silver nanoparticle treated cotton fabric. Cellulose 28, 5895–5910.
  • 8. Arik B. 2021. Common and nano-antimicrobial textile finishes. In: Mondal MIH (ed) Antimicrobial Textiles From Natural Resources. Chap. 3. Woodhead Publishing, pp 87-117.
  • 9. Ogunsona EO, Muthuraj R, Ojogbo E, Valerio O, Mekonnen TH. 2020. Engineered nanomaterials for antimicrobial applications: a review. Applied Materials Today 18, 100473.
  • 10. Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SED, Eid AM, Shaheen TI, Elkelish A, Fouda A. 2020. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10(10), 2082.
  • 11. George C, Kuriakose S, Prakashkumar B, Mathew T. 2010. Synthesis, characterisation and antibacterial applications of water-soluble, silver nanoparticle encapsulated β-cyclodextrin. Supramolecular Chemistry 22(9), 511–516.
  • 12. Jaiswal S, Duffy B, Jaiswal AK, Stobie N, McHale P. 2010. Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. International Journal of Antimicrobial Agents 36(3), 280–283.
  • 13. Ravindra S, Mohan YM, Reddy NN, Raju KM. 2010. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via green approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects 367, 31–40.
  • 14. Andrade PF, de Faria AF, da Silva DS, Bonacin JA, do Carmo Goncalves M. 2014. Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids and Surfaces B:Biointerfaces 118, 289–297.
  • 15. Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y. 2015. Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydrate Polymers 134, 128–135.
  • 16. Heravi MEM. 2020. Effects of hydrodynamic diameter of nanoparticles on antibacterial activity and durability of Ag-treated cotton fabrics. Fibers and Polymers 21(6), 1173-1179.
  • 17. Begam R, Joshi M, Purwar R. 2021. Antimicrobial finishing of cotton textiles using silver intercalated clay. Fibers and Polymers 23(1), 148-154.
  • 18. Hebeish A, El-Shafei A, Sharaf S, Zaghloul S. 2014. In situ formation of silver nanoparticles for multifunctional cotton containing cyclodextrin. Carbohydrate Polymers 103, 442–447.
  • 19. Ibrahim HM, Hassan MS. 2016. Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydrate Polymers 151, 841–850.
  • 20. Popescu V, Petrea M, Popescu A. 2021. Multifunctional finishing of cotton with compounds derived from MCT-β-CD and quantification of effects using MLR statistical analysis. Polymers 13(3), 410.
  • 21. Zhang S, Zhang T, He J, Dong X. 2021. Effect of AgNP distribution on the cotton fiber on the durability of antibacterial cotton fabrics. Cellulose 28, 9489–9504.
  • 22. Hebeish A, El-Shafei A, Sharaf S, Zaghloul S. 2014. Development of improved nanosilver-based antibacterial textiles via synthesis of versatile chemically modified cotton fabric. Carbohydrate Polymers 113, 455–462.
  • 23. Hedayati N, Montazer M, Mahmoudirad M, Toliyat T. 2021. Cotton fabric incorporated with β-cyclodextrin/ ketoconazole/Ag NPs generating outstanding antifungal and antibacterial performances. Cellulose 28, 8095–8113.
  • 24. Ma Z, Liu J, Shen G, Zheng X, Pei Y, Tang K. 2021. In-situ synthesis and immobilization of silver nanoparticles on microfibrillated cellulose for long-term antibacterial applications. Cellulose 28, 6287–6303.
  • 25. Pergal MV, Dojčinović BP, Nikodinović-Runić J, Dražić G, Zabukovec Logar N, Ostojić S, Antić B. 2022. Synthesis, physicochemical, and antimicrobial characteristics of novel poly (urethane-siloxane) network/silver ferrite nanocomposites. Journal of Materials Science 57(16), 7827-7848.
  • 26. Nogueira FÁS. 2018. Covalent and non-covalent strategies for surface modification of different textile materials with antimicrobial properties. PhD thesis, Universidade da Beira Interior, Portugal.
  • 27. Ru J, Qian X, Wang Y. 2018. Study on antibacterial finishing of cotton fabric with silver nanoparticles stabilized by nanoliposomes. Cellulose 25(9), 5443-5454.
  • 28. Malini S, Kumar SV, Hariharan R, Bharathi AP, Devi PR, Hemananthan E. 2020. Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Materials Today: Proceedings 21, 828–832.
  • 29. Popescu O, Dunca S, Grigoriu A. 2013. Antibacterial action of silver applied on cellulose fibers grafted with monochlorotriazinyl-β-cyclodextrin. Cellulose Chemistry and Technology 47(3–4), 247–255.
  • 30. Sathiya Priya R, Geetha D, Ramesh PS. 2013. Antibacterial activity of nano-silver capped by β-cyclodextrin. Carbon Science and Technology 5(1), 197–202.
  • 31. Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. 2018. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research 9, 1-16.
  • 32. Nowak M, Tolińska A, Marciniak L, Skrobańska M, Tylkowski B, Frankowski M, Kaczmarek MT, Jastrzab R. 2022. Green preparation and characterization of silver nanocolloids used as antibacterial material in soap. Journal of Materials Science 57(18), 8481-8488.
  • 33. Sharma P, Pant S, Rai S, Yadav RB, Sharma S, Dave V. 2018. Green synthesis and characterization of silver nanoparticles by Allium cepa L. to produce silver nano‐coated fabric and their antimicrobial evaluation. Applied Organometallic Chemistry 32(3), e4146.
  • 34. Nahar K, Rahaman MdH, Khan GMA, Islam MdK, Al-Reza SMd. 2021. Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential. Asian Journal of Green Chemistry 5(1), 135-150.
  • 35. Reyes-Melo ME, Miranda-Valdez IY, Puente-Córdova JG, Camarillo-Hernández CA, López-Walle B. 2021. Fabrication and characterization of a biocompatible hybrid film based on silver nanoparticle/ethyl cellulose polymer. Cellulose 28(14), 9227-9240.
  • 36. Alavi M, Varma RS. 2021. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose 28, 8295–8311.
  • 37. Al Masud MA, Shaikh H, Alam MS, Karim MM, Momin MA, Islam MA, Khan GMA. 2021. Green synthesis of silk sericin-embedded silver nanoparticles and their antibacterial application against multidrug-resistant pathogens. Journal of Genetic Engineering and Biotechnology 19(1), 74.
  • 38. Szejtli J. 2013. Cyclodextrin Technology. Vol. 1. Springer Science & Business Media, 450p.
  • 39. Popr MM. 2016. Synthesis of cyclodextrin derivatives for practical applications. PhD thesis, Charles University, Prague, Czech Republic.
  • 40. Setthayanond J, Sodsangchan C, Suwanruji P, Tooptompong P, Avinc O. 2017. Influence of MCT-β-cyclodextrin treatment on strength, reactive dyeing and third-hand cigarette smoke odor release properties of cotton fabric. Cellulose 24, 5233–5250.
  • 41. Carneiro SB, Costa Duarte FÍ, Heimfarth L, Siqueira Quintans JDS, Quintans-Júnior LJ, Veiga Júnior VFD, Neves de Lima ÁA. 2019. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. International Journal of Molecular Sciences 20(3), 642.
  • 42. Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Curto Valle RDCS, Borges Valle JA, Scacchetti FAP, Tessaro AL. 2020. The role of β-cyclodextrin in the textile industry-Review. Molecules 25(16), 3624.
  • 43. Tarannum N, Kumar D. 2020. Synthesis, characterization and applications of copolymer of β–cyclodextrin: a review. Journal of Polymer Research 27(89), 1-30.
  • 44. El-Sayed E, Othman HA, Hassabo AG. 2021. Cyclodextrin usage in textile industry. Journal of Textiles, Coloration and Polymer Science 18(2), 111-119.
  • 45. Feng Y, Chen S, Li Z, Gu Z, Xu S, Ban X, Hong Y, Cheng L, Li C. 2021. A review of controlled release from cyclodextrins: release methods, release systems and application. Critical Reviews in Food Science and Nutrition 1-13.
  • 46. Sun XZ, Wu JZ, Wang HD, Guan C. 2021. Thermosensitive cotton textile loaded with cyclodextrin-complexed curcumin as a wound dressing. Fibers and Polymers 22(9), 2475-2482.
  • 47. Radu CD, Parteni O, Ochiuz L. 2016. Applications of cyclodextrins in medical textiles. Journal of Controlled Release 224, 146–157.
  • 48. Liu J, Ma X, Shi W, Xing J, Ma C. 2020. Grafting modification of natural fibres with cyclodextrin. Fibres & Textiles in Eastern Europe 28, 15-23.
  • 49. Arruda TR, Marques CS, Soares NFF. 2021. Native cyclodextrins and their derivatives as potential additives for food packaging: A review. Polysaccharides 2(4), 825-842.
  • 50. Zhou LY, Wang YH, Pan RR, Wan ZH, Zhang MJ, Liu YT. 2022. Optimized-dose lidocaine-loaded sulfobutyl ether β-cyclodextrin/hyaluronic acid hydrogels to improve physical, chemical, and pharmacological evaluation for local anesthetics and drug delivery systems. Journal of Materials Science 57(13), 7068-7084.
  • 51. Řezanka M. 2018. Synthesis of cyclodextrin derivatives. In: Fourmentin S, Crini G, Lichtfouse E (eds) Cyclodextrin Fundamentals, Reactivity And Analysis, Environmental Chemistry For A Sustainable World. Vol. 16. Springer, Cham, pp 57-103.
  • 52. Liu J, Ma X, Shi W, Xing J. 2021. Evaluation of enhanced UV protection property of dyed cotton fabrics based on inclusion complex of β-cyclodextrin with natural coumarin extracted from Cortex fraxini. Fibers and Polymers 22(6), 1569-1579.
  • 53. Aubert-Viard F, Mogrovejo-Valdivia A, Tabary N, Maton M, Chai F, Neut C, Martel B, Blanchemain N. 2019. Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application. Materials Science and Engineering: C 100, 554-563.
  • 54. Selvam S, Gandhi RR, Suresh J, Gowri S, Ravikumar S, Sundrarajan M. 2012. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. International Journal of Pharmaceutics 434(1–2), 366–374.
  • 55. Yang T. 2009. Poly(vinyl alcohol)-sulfated β-cyclodextrin for direct methanol fuel cell applications. International Journal of Hydrogen Energy 34(16), 6917–6924.
  • 56. Montazer M, Alimohammadi F, Shamei A, Rahimi MK. 2012. In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydrate Polymers 87(2), 1706-1712.
There are 56 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Cagla Sari 0000-0001-9476-5933

Buket Arık 0000-0003-0647-5851

Project Number -
Early Pub Date January 1, 2024
Publication Date December 31, 2023
Submission Date September 15, 2022
Acceptance Date December 27, 2022
Published in Issue Year 2023

Cite

APA Sari, C., & Arık, B. (2023). Cotton Fabrics Finished by Natural and Sulfated β-Cyclodextrin Inclusion Complexes of Silver Nanoparticles for Biomedical Applications. Textile and Apparel, 33(4), 375-387. https://doi.org/10.32710/tekstilvekonfeksiyon.1175598

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.