HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YARDIMIYLA ÖRME KUMAŞLARIN HAVA GEÇİRGENLİĞİNİN TAHMİN EDİLMESİ
Year 2014,
Volume: 24 Issue: 2, 202 - 211, 01.12.2014
Serin Mezarcıöz
Serkan Mezarcıöz
,
R.tuğrul Oğulata
Abstract
Bu çalışmanın amacı, Hesaplamali Akışkanlar Dinamiği (HAD) sistemlerinin bugünkü yeteneklerine gore, suprem kumaş hava geçirgenliği simülasyonu için yeni bir yaklaşım geliştirmektir. Örme kumaşların kalınlık boyunca geçirgenliğinin 3 boyutlu simülasyonu FLUENT® yazılım paketi kullanılarak gerçekleştirilmiş, nümerik sonuçlar deneysel veriler temelinde doğrulanmıştır. Çalışma sonunda, deneysel sonuçların nümerik HAD sonuçları ile büyük ölçüde uyumlu olduğu bulunmuştur
References
- 1. Karaguzel, B., 2004, “Characterization and Role of Porosity in Knitted Fabrics”, MSc Thesis, North Carolina State University, Department of Textile Engineering, Chemistry and Science, p.132.
- 2. Benltoufa, S., Fayala, F., Cheikhrouhou, M., and Ben Nasrallah, S., 2007, “Porosity Determination of Jersey Structure”, AUTEX Research Journal, Vol:7, No:1, pp:63-69.
- 3. Angelova, R.A., Stankov, P., Simova, I., and Aragon, I., 2011, “Three Dimensional Simulation of Air Permeability of Single Layer Woven Structures”, Central European Journal of Engineering, 1(4), pp:430-435.
- 4. Ogulata, R.T, Mavruz, S., 2010, “Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics”, Fibres & Textiles in Eastern Europe, Vol.18 No.5 (82), pp.71-75.
- 5. Wilbik-Halgas, B., Danych, R., Wiecek, B., and Kowalski, K., 2006, “Air and Water Vapour Permeability in Double-Layered Knitted Fabrics with Different Raw Materials”, Fibres & Textiles in Eastern Europe, Vol:14, No:3(57), pp: 77-80.
- 6. Dias, T., and Delkumburewatte, G.B., 2008, “Changing Porosity of Knitted Structures by Changing Tightness”, Fibers and Polymers, Vol:9, No:1, pp:76- 79.
- 7. Mavruz, S., and Oğulata, R.T., 2009, “Investigation and Statistical Prediction of Air Permeability of Cotton Knitted Fabrics”, Tekstil ve Konfeksiyon, Vol:19(1), pp:29-38.
- 8. Vassiliadis, S., Kallivretaki, A., Cay, A., Dimitrofski, K., 2013, “Computational Modeling of the Air Permeability of Fabrics”,5th International Conference of Applied Research in Textile, CIRAT-5, Monastir, Tunisia, pp:12-13.
- 9. Mullins, B.J., King, A.J.C., and Braddock, R.D., 2011, “Modelling the Influence of Filter Structure on Efficiency and Pressure Drop in Knitted Filters”, 19th International Congress on Modelling and Simulation, Perth, Australia, pp:7.
- 10. Cimilli, S.D., Deniz, E., Candan, C., and Nergis, B.U., 2012, “Determination of Natural Convective Heat Transfer Coefficient for Plain Knitted Fabric via CFD Modeling”, Fibres & Textiles in Eastern Europe, Vol.20 No.1 (90), pp.42-46.
- 11. TS 391 EN ISO 9237, 1999, Textiles-Determination of the Permeability of Fabrics to Air, Turkish Standards Institution, Ankara.
- 12. TS EN 14970, 2006, Textiles - Knitted fabrics - Determination of Stitch Length and Yarn Linear Density in Weft Knitted Fabrics, Turkish Standards Institution, Ankara.
- 13. TS EN 14971, 2006, Textiles - Knitted fabrics - Determination of Number of Stitches per Unit Length and Unit Area, Turkish Standards Institution, Ankara.
- 14. TS 7128 EN ISO 5084, 1998, Textiles-Determination of Thickness of Textiles and Textile Products, Turkish Standards Institution, Ankara.
- 15. TS 251, 1991, Determination of Mass per Unit Length and Mass per Unit Area, Turkish Standards Institution, Ankara.
- 16. Booth, J.E., 1977, Textile Mathematics, The Textile Institute, ISBN 0 900739 24X, p.514.
- 17. Cay, A., Vassiliadis, S., Rangoussi, M., and Tarakcioglu, I., 2004, “On the Use of Image Processing Techniques for the Estimation of the Porosity of Textile Fabrics”, International Journal of Signal Processing, Vol:1(1), pp:51-54.
- 18. Ogulata, R.T., 2006, “Air Permeability of Woven Fabrics”, Journal of Textile and Apparel, Technology and Management, Volume 5, Issue 2, 1-10.
- 19. Xu, G., Wang, F., 2005, “Prediction of the Permeability of Woven Fabrics”, Journal of Industrial Textiles, Vol.34, No:4, 243-254.
- 20. Holman, J.P., 1992, Heat Transfer, Seventh Edition, McGraw-Hill Book Company, 1992.
- 21. http://www.ixforten.com/cfd.htm, Computer Fluid Dynamics, (accessed December, 2013).
- 22. Fluent 6.3.26, 2006, User’s Guide. Fluent Inc.
- 23. Leisen, J., Beckham, H., Farber, P., 2005, “Micro-Flow in Textiles“, NTC Project:F04-GT05, pp.10.
- 24. Bulut, S., Ünveren, M., Arısoy, A., Böke, Y.E., 2011, “CFD Analiz Yöntemiyle Klima Santrallerinde İç Kayıpların Azaltılması”, X. Ulusal Tesisat Mühendisliği Kongresi, Nisan, İzmir, pp.291-326.
- 25. GAMBIT 2.4.6. Software program, 2007.
- 26. Moujaes, S., Gundavelli, R., 2012, “CFD Simulation of Leak in Residential HVAC Ducts”, Energy and Buildings 54 (2012), 534–539.
PREDICTION OF AIR PERMEABILITY OF KNITTED FABRICS BY MEANS OF COMPUTATIONAL FLUID DYNAMICS
Year 2014,
Volume: 24 Issue: 2, 202 - 211, 01.12.2014
Serin Mezarcıöz
Serkan Mezarcıöz
,
R.tuğrul Oğulata
Abstract
The aim of current study is to develop a novel approach for simulation of the single jersey fabrics’ air permeability based on the present abilities of Computational Fluid Dynamics (CFD) systems. 3D simulation of the through-thickness permeability of knitted fabrics was performed by using FLUENT® software package. The numerical results were verified on the basis of experimental data. At the end of study, it is found that experimental results are highly compatible with the numerical CFD results
References
- 1. Karaguzel, B., 2004, “Characterization and Role of Porosity in Knitted Fabrics”, MSc Thesis, North Carolina State University, Department of Textile Engineering, Chemistry and Science, p.132.
- 2. Benltoufa, S., Fayala, F., Cheikhrouhou, M., and Ben Nasrallah, S., 2007, “Porosity Determination of Jersey Structure”, AUTEX Research Journal, Vol:7, No:1, pp:63-69.
- 3. Angelova, R.A., Stankov, P., Simova, I., and Aragon, I., 2011, “Three Dimensional Simulation of Air Permeability of Single Layer Woven Structures”, Central European Journal of Engineering, 1(4), pp:430-435.
- 4. Ogulata, R.T, Mavruz, S., 2010, “Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics”, Fibres & Textiles in Eastern Europe, Vol.18 No.5 (82), pp.71-75.
- 5. Wilbik-Halgas, B., Danych, R., Wiecek, B., and Kowalski, K., 2006, “Air and Water Vapour Permeability in Double-Layered Knitted Fabrics with Different Raw Materials”, Fibres & Textiles in Eastern Europe, Vol:14, No:3(57), pp: 77-80.
- 6. Dias, T., and Delkumburewatte, G.B., 2008, “Changing Porosity of Knitted Structures by Changing Tightness”, Fibers and Polymers, Vol:9, No:1, pp:76- 79.
- 7. Mavruz, S., and Oğulata, R.T., 2009, “Investigation and Statistical Prediction of Air Permeability of Cotton Knitted Fabrics”, Tekstil ve Konfeksiyon, Vol:19(1), pp:29-38.
- 8. Vassiliadis, S., Kallivretaki, A., Cay, A., Dimitrofski, K., 2013, “Computational Modeling of the Air Permeability of Fabrics”,5th International Conference of Applied Research in Textile, CIRAT-5, Monastir, Tunisia, pp:12-13.
- 9. Mullins, B.J., King, A.J.C., and Braddock, R.D., 2011, “Modelling the Influence of Filter Structure on Efficiency and Pressure Drop in Knitted Filters”, 19th International Congress on Modelling and Simulation, Perth, Australia, pp:7.
- 10. Cimilli, S.D., Deniz, E., Candan, C., and Nergis, B.U., 2012, “Determination of Natural Convective Heat Transfer Coefficient for Plain Knitted Fabric via CFD Modeling”, Fibres & Textiles in Eastern Europe, Vol.20 No.1 (90), pp.42-46.
- 11. TS 391 EN ISO 9237, 1999, Textiles-Determination of the Permeability of Fabrics to Air, Turkish Standards Institution, Ankara.
- 12. TS EN 14970, 2006, Textiles - Knitted fabrics - Determination of Stitch Length and Yarn Linear Density in Weft Knitted Fabrics, Turkish Standards Institution, Ankara.
- 13. TS EN 14971, 2006, Textiles - Knitted fabrics - Determination of Number of Stitches per Unit Length and Unit Area, Turkish Standards Institution, Ankara.
- 14. TS 7128 EN ISO 5084, 1998, Textiles-Determination of Thickness of Textiles and Textile Products, Turkish Standards Institution, Ankara.
- 15. TS 251, 1991, Determination of Mass per Unit Length and Mass per Unit Area, Turkish Standards Institution, Ankara.
- 16. Booth, J.E., 1977, Textile Mathematics, The Textile Institute, ISBN 0 900739 24X, p.514.
- 17. Cay, A., Vassiliadis, S., Rangoussi, M., and Tarakcioglu, I., 2004, “On the Use of Image Processing Techniques for the Estimation of the Porosity of Textile Fabrics”, International Journal of Signal Processing, Vol:1(1), pp:51-54.
- 18. Ogulata, R.T., 2006, “Air Permeability of Woven Fabrics”, Journal of Textile and Apparel, Technology and Management, Volume 5, Issue 2, 1-10.
- 19. Xu, G., Wang, F., 2005, “Prediction of the Permeability of Woven Fabrics”, Journal of Industrial Textiles, Vol.34, No:4, 243-254.
- 20. Holman, J.P., 1992, Heat Transfer, Seventh Edition, McGraw-Hill Book Company, 1992.
- 21. http://www.ixforten.com/cfd.htm, Computer Fluid Dynamics, (accessed December, 2013).
- 22. Fluent 6.3.26, 2006, User’s Guide. Fluent Inc.
- 23. Leisen, J., Beckham, H., Farber, P., 2005, “Micro-Flow in Textiles“, NTC Project:F04-GT05, pp.10.
- 24. Bulut, S., Ünveren, M., Arısoy, A., Böke, Y.E., 2011, “CFD Analiz Yöntemiyle Klima Santrallerinde İç Kayıpların Azaltılması”, X. Ulusal Tesisat Mühendisliği Kongresi, Nisan, İzmir, pp.291-326.
- 25. GAMBIT 2.4.6. Software program, 2007.
- 26. Moujaes, S., Gundavelli, R., 2012, “CFD Simulation of Leak in Residential HVAC Ducts”, Energy and Buildings 54 (2012), 534–539.