HARDNESS PROPERTIES OF PLASTIC OPTICAL FIBERS BY NANOINDENTATION
Year 2014,
Volume: 24 Issue: 4, 333 - 338, 01.12.2014
Juan Huang
Dana Kremenáková
Jirí Militký
Abstract
Mechanical properties are significant for plastic optical fibers in weaving or knitting processes in textile applications. Both core and cladding in plastic optical fiber contribute to the mechanical properties. Nanoindentation is a promising method to investigate the mechanical properties (hardness, stiffness and Young's modulus) in nanoscale displacement and small load range. Nanoindentation creep as the highly time-dependent deformation has a significant effect on nanoindentation properties of polymeric materials. In present work, core and cladding in both latitudinal and longitudinal cross sections of plastic optical fibers with four diameters were investigated in different conditions (loading rates and holding times) under the maximum load of 0.3 mN. The results show that cladding is softer than core and both strong loading rate and holding time sensitivities on nanoindentation creep no matter in latitudinal or longitudinal cross sections. It is also found that the greater the fiber diameter, the higher the hardness and modulus
References
- 1. Oliver W.C., Pharr G.M., 2004, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, Vol: 19(1), pp. 3-20.
- 2. Golovin Y.I., Iunin Y. L., Tyurin A.I., 2003, Strain-Rate Sensitivity of the Hardness of Crystalline Materials under Dynamic Nanoindentation, Doklady Physics, Vol: 48(9), pp. 505-508.
- 3. Ma Z.S., Long S.G., Pan Y., Zhou Y.C., 2008, Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films, Journal of Materials Science., Vol: 43, pp. 5952-5954.
- 4. Briscoe B.J., Fiori L., Pelillo E., 1998, Nano-indentation of polymeric surfaces, J. Phys. D: Applied Physics, Vol: 31, pp. 2395-2405.
- 5. Pang J.J., Tan m.j., Liew K.M, 2012, Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7, Physica B: Condensed Matter, Vol: 407(3), pp. 340-346.
- 6. Zubia J., Arrue J., 2001, Plastic Optical Fibers: an introduction to their technology processes and applications, Optical Fiber Technology, Vol: 7, pp. 101- 140.
- 7. Thiele E., Helbig R., Weigand F., Arnold R. Seeger M., 2009, Two ways to apply optical fibers in textile structures, T-Plot Workshop Technical Textiles and Textile Recycling.
- 8. Wang J.C., Yang B., Huang B.H, Jin Z.M., 2012, Design and development of polymeric optical fiber jacquard fabric with dynamic pattern display, Textile Research Journal, Vol: 82(10), pp. 967-974.
- 9. Křemenáková D., Lédl V., Militký J., Bůbelová B., Meryová B., 2013, Active illuminating safety product, Certified Product n. 24997, Patent office, Czech Republic.
- 10. Krebber, K., Lenke, P., Liehr, S., Witt, J. and Schukar, M., 2008, Smart technical textiles with integrated POF sensors, Proceedings of SPIE 6933, Vol: 69330 (5), pp. 1-15.
- 11. Lee S.H., Wang S.Q., Pharr G.M., Xu H.T., 2001, Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis, Composites, Part A: applied science and manufacturing, Vol: 38, pp. 1517-1524.
- 12. Yang S., Zhang Y.W., Zeng K.Y., 2004, Analysis of Nanoindentation Creep for Polymeric Materials, Journal of Applied Physics, Vol: 95 (7), pp. 3655-3666.
- 13. Raman V., Berriche R., 1992, An Investigation of the Creep Processes in Tin and Aluminum using a Depth-sensing Indentation Technique, Journal of Materials Research, Vol: 7 (3), pp. 627-638.
NANOİZ TESTİ İLE PLASTİK OPTİK LİFLERİN ÖZELLİKLERİNİN İNCELENMESİ
Year 2014,
Volume: 24 Issue: 4, 333 - 338, 01.12.2014
Juan Huang
Dana Kremenáková
Jirí Militký
References
- 1. Oliver W.C., Pharr G.M., 2004, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, Vol: 19(1), pp. 3-20.
- 2. Golovin Y.I., Iunin Y. L., Tyurin A.I., 2003, Strain-Rate Sensitivity of the Hardness of Crystalline Materials under Dynamic Nanoindentation, Doklady Physics, Vol: 48(9), pp. 505-508.
- 3. Ma Z.S., Long S.G., Pan Y., Zhou Y.C., 2008, Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films, Journal of Materials Science., Vol: 43, pp. 5952-5954.
- 4. Briscoe B.J., Fiori L., Pelillo E., 1998, Nano-indentation of polymeric surfaces, J. Phys. D: Applied Physics, Vol: 31, pp. 2395-2405.
- 5. Pang J.J., Tan m.j., Liew K.M, 2012, Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7, Physica B: Condensed Matter, Vol: 407(3), pp. 340-346.
- 6. Zubia J., Arrue J., 2001, Plastic Optical Fibers: an introduction to their technology processes and applications, Optical Fiber Technology, Vol: 7, pp. 101- 140.
- 7. Thiele E., Helbig R., Weigand F., Arnold R. Seeger M., 2009, Two ways to apply optical fibers in textile structures, T-Plot Workshop Technical Textiles and Textile Recycling.
- 8. Wang J.C., Yang B., Huang B.H, Jin Z.M., 2012, Design and development of polymeric optical fiber jacquard fabric with dynamic pattern display, Textile Research Journal, Vol: 82(10), pp. 967-974.
- 9. Křemenáková D., Lédl V., Militký J., Bůbelová B., Meryová B., 2013, Active illuminating safety product, Certified Product n. 24997, Patent office, Czech Republic.
- 10. Krebber, K., Lenke, P., Liehr, S., Witt, J. and Schukar, M., 2008, Smart technical textiles with integrated POF sensors, Proceedings of SPIE 6933, Vol: 69330 (5), pp. 1-15.
- 11. Lee S.H., Wang S.Q., Pharr G.M., Xu H.T., 2001, Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis, Composites, Part A: applied science and manufacturing, Vol: 38, pp. 1517-1524.
- 12. Yang S., Zhang Y.W., Zeng K.Y., 2004, Analysis of Nanoindentation Creep for Polymeric Materials, Journal of Applied Physics, Vol: 95 (7), pp. 3655-3666.
- 13. Raman V., Berriche R., 1992, An Investigation of the Creep Processes in Tin and Aluminum using a Depth-sensing Indentation Technique, Journal of Materials Research, Vol: 7 (3), pp. 627-638.