BibTex RIS Cite

ELEKTİRİK AKIMININ ELEKTROSPUN POLIMER JETI UZERİNDEKİ ETKİSİ

Year 2015, Volume: 25 Issue: 3, 201 - 206, 01.12.2015

Abstract

Sistem ve işlem parametreleri elektro lif çekim yöntemiyle oluşturulmuş boncuksuz ve ince çaplı nanolifler üzerinde büyük rol oynamaktadır. Bu çalışmada sistem ve işlem parametrelerinin polyvinyl butiral (PVB) nanolifler üzerindeki etkisi çalışılmıştır. PVB nanolifleri elektro lif çekim yöntemi uygulanarak üretilmiştir. Farklı voltaj ve besleme hızı kullanarak jet üzerindeki akim ölçülmüştür. Uygulanan voltaj ve besleme hızının jet rejimlerinin (örn. Sabit jet, dalgalı jet ve polimer damlamalı sabit jet) oluşumda rol alan akimi etkilediği gözlemlenmiştir. Nanoliflerin morfolojisi her rejimde farklılık göstermiştir. Dahası iletkenliğin jet akimi ve farklı jet rejimleri üzerindeki etkisi incelenmiştir. Deneysel şartların sonucu olarak toplanan nanoliflerin özellikleri kıyaslanmıştır. Akim testi bocuksuz nanolif yüzeyinin tayini için kullanılmıştır

References

  • 1. Ma P.X., Zhang R.Y., 1999, Synthetic nano-scale fibrous extracellular matrix, J Biomed. Mater Res, 46, 1, pp 60-72.
  • 2. Fabbricante T.J., Fabbricante A.S., Ward G.F., Micro-denier nonwoven materials made using modular die units, US patent 6114017 A, 2000.
  • 3. Huang T., Marshall L.R., Armantrout J.E., Yembrick S., Dunn W.H., Oconnor J.M., Mueller T., Avgousti M., Wetzel M.D., 2012, Production of nanofibers by melt spinning, US patent 20080242171 A1.
  • 4. Torobin L., Findlow R.C., 2001, Method and Apparatus for Producing High Efficiency Fibrous Medin Incorporating Discontinous Sub-Micron Diameter Fibers and Web Media Formed Thereby, US patent 6315806 B1.
  • 5. Pike R.D., 1999, Superfine microfiber nonwoven web, US patent 5935883 A.
  • 6. Nain A.S., Wong J.C., Amon C., Sitti M., 2006, Drawing Suspended Polymer Micro/Nanofibers using Glass Micropipettes, App. Phys. Lett., 89, 18, pp 183105 - 183105-3.
  • 7. Cengiz-Çallıoğlu F., 2014.'The Effect of glyoxal cross-linker and NaCl salt addition on the roller electrospinning of Poly(vinyl alcohol) nanofibers', Tekstil ve Konfeksiyon, 24(1), pp. 15-20
  • 8. Fridrikh S.V., Yu J.H., Brenner M.P., Rutledge G.C., 2003, Controlling the fiber diameter during electrospinning, Physical Review Letters, 90(14).
  • 9. Deitzel J.M., Kleinmeyer J., Harris D., Beck Tan N.C., 2001, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1): p. 261-272.
  • 10. Theron S.A., Yarin A.L., Zussman E., Kroll E., 2005, Multiple jets in electrospinning: experiment and modelin, Polymer, 46(9): p. 2889-2899.
  • 11. Theron S.A., Zussman E., Yarin A.L., 2004, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer, 45(6): p. 2017-2030.
  • 12. Shin Y.M., Hohman M.M., Brenner M.P., Rutledge G.C., 2001, Experimental characterization of electrospinning: the electrically forced jet and instabilities, Polymer, 42(25): p. 9955-9967.
  • 13. Demir, M.M., Yilgor I., Yilgor E., Erman B., 2002, Electrospinning of polyurethane fibers, Polymer, 43(11): p. 3303-3309.
  • 14. He J.H., Wan Y.Q., Yu J.Y., Scaling law in electrospinning: relationship between electric current and solution flow rate, 2005, Polymer, 46(8): p. 2799-2801.
  • 15. Kuikka J.T., 2002, Fractal analysis in medical imaging, International Journal of Nonlinear Sciences and Numerical Simulation, 3(2): p. 81-88.
  • 16. Kuikka J.T., 2003 Scaling laws in physiology: Relationships between size, function, metabolism and life expectancy, International Journal of Nonlinear Sciences and Numerical Simulation, 4(4): p. 317-327.
  • 17. Bhattacharjee P.K., Schneider T.M., Brenner M.P., McKinley G.H.,Rutledge G.C., 2010, On the measured current in electrospinning, Journal of Applied Physics, 107(4).
  • 18. Pokorny P., Mikes P., Lukas D., 2010, Measurement of Electric Current in Liquid Jet, Nanocon 2010, 2nd International Conference, Brno, p. 282-286.
  • 19. Samatham R., Kim K.J., 2006, Electric current as a control variable in the electrospinning process, Polymer Engineering and Science, 46(7): p. 954-959.
  • 20. Yener F., Yalcinkaya B., Jirsak O., 2012, Effect of Jet Electric Current on Jet Regimes in Electrospinning of Polyvinyl Butyral Solutions, in Fiber Society Conference, St. Gallen.
  • 21. Yener F., Jirsak O., 2011, Improving Performance of Polyvinyl Butyral Electrospinning, Nanocon 2011, 3nd International Conference, Brno, p. 356-361.
  • 22. Jeun J.P., Lim Y.M., Nho Y.C., 2005, Study on morphology of electrospun poly (caprolactone) nanofiber, Journal of Industrial and Engineering Chemistry, 11(4): p. 573-578.
  • 23. Wu C.M., Chiou H.G., Lin S.L., Lin J.M., 2012, Effects of electrostatic polarity and the types of electrical charging on electrospinning behavior, Journal of Applied Polymer Science, 126: p. E89-E97.

EFFECT OF CURRENT ON POLYMER JET IN ELECTROSPINNING PROCESS

Year 2015, Volume: 25 Issue: 3, 201 - 206, 01.12.2015

Abstract

System and process parameters play a major role in the production of fine bead free electrospun nanofibers. In this study, the influence of the system and process parameters were observed during the production of polyvinyl butyral (PVB) nanofibers. PVB nanofibers were produced by a needle electrospinning system. The voltage and feed rate of the system was varied to observe its effect on the electric current applied to a polymer jet. It was observed that the applied voltage and flow rate utilized on the polyvinyl butyral polymer solution affected the electric current’s influence on the jet regimes (e.g. stable jet, fluctuated jet and stable jet with polymer drops). Nanofiber morphology showed the differences in fiber quality for each parameter. Additionally, the effect of conductivity on current and various jet regimes was examined. The properties of each of the samples were compared as parameters of the spinneret were varied in each experiment. The current test was used to determine if the surface morphology of the nanofiber was beadless

References

  • 1. Ma P.X., Zhang R.Y., 1999, Synthetic nano-scale fibrous extracellular matrix, J Biomed. Mater Res, 46, 1, pp 60-72.
  • 2. Fabbricante T.J., Fabbricante A.S., Ward G.F., Micro-denier nonwoven materials made using modular die units, US patent 6114017 A, 2000.
  • 3. Huang T., Marshall L.R., Armantrout J.E., Yembrick S., Dunn W.H., Oconnor J.M., Mueller T., Avgousti M., Wetzel M.D., 2012, Production of nanofibers by melt spinning, US patent 20080242171 A1.
  • 4. Torobin L., Findlow R.C., 2001, Method and Apparatus for Producing High Efficiency Fibrous Medin Incorporating Discontinous Sub-Micron Diameter Fibers and Web Media Formed Thereby, US patent 6315806 B1.
  • 5. Pike R.D., 1999, Superfine microfiber nonwoven web, US patent 5935883 A.
  • 6. Nain A.S., Wong J.C., Amon C., Sitti M., 2006, Drawing Suspended Polymer Micro/Nanofibers using Glass Micropipettes, App. Phys. Lett., 89, 18, pp 183105 - 183105-3.
  • 7. Cengiz-Çallıoğlu F., 2014.'The Effect of glyoxal cross-linker and NaCl salt addition on the roller electrospinning of Poly(vinyl alcohol) nanofibers', Tekstil ve Konfeksiyon, 24(1), pp. 15-20
  • 8. Fridrikh S.V., Yu J.H., Brenner M.P., Rutledge G.C., 2003, Controlling the fiber diameter during electrospinning, Physical Review Letters, 90(14).
  • 9. Deitzel J.M., Kleinmeyer J., Harris D., Beck Tan N.C., 2001, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1): p. 261-272.
  • 10. Theron S.A., Yarin A.L., Zussman E., Kroll E., 2005, Multiple jets in electrospinning: experiment and modelin, Polymer, 46(9): p. 2889-2899.
  • 11. Theron S.A., Zussman E., Yarin A.L., 2004, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer, 45(6): p. 2017-2030.
  • 12. Shin Y.M., Hohman M.M., Brenner M.P., Rutledge G.C., 2001, Experimental characterization of electrospinning: the electrically forced jet and instabilities, Polymer, 42(25): p. 9955-9967.
  • 13. Demir, M.M., Yilgor I., Yilgor E., Erman B., 2002, Electrospinning of polyurethane fibers, Polymer, 43(11): p. 3303-3309.
  • 14. He J.H., Wan Y.Q., Yu J.Y., Scaling law in electrospinning: relationship between electric current and solution flow rate, 2005, Polymer, 46(8): p. 2799-2801.
  • 15. Kuikka J.T., 2002, Fractal analysis in medical imaging, International Journal of Nonlinear Sciences and Numerical Simulation, 3(2): p. 81-88.
  • 16. Kuikka J.T., 2003 Scaling laws in physiology: Relationships between size, function, metabolism and life expectancy, International Journal of Nonlinear Sciences and Numerical Simulation, 4(4): p. 317-327.
  • 17. Bhattacharjee P.K., Schneider T.M., Brenner M.P., McKinley G.H.,Rutledge G.C., 2010, On the measured current in electrospinning, Journal of Applied Physics, 107(4).
  • 18. Pokorny P., Mikes P., Lukas D., 2010, Measurement of Electric Current in Liquid Jet, Nanocon 2010, 2nd International Conference, Brno, p. 282-286.
  • 19. Samatham R., Kim K.J., 2006, Electric current as a control variable in the electrospinning process, Polymer Engineering and Science, 46(7): p. 954-959.
  • 20. Yener F., Yalcinkaya B., Jirsak O., 2012, Effect of Jet Electric Current on Jet Regimes in Electrospinning of Polyvinyl Butyral Solutions, in Fiber Society Conference, St. Gallen.
  • 21. Yener F., Jirsak O., 2011, Improving Performance of Polyvinyl Butyral Electrospinning, Nanocon 2011, 3nd International Conference, Brno, p. 356-361.
  • 22. Jeun J.P., Lim Y.M., Nho Y.C., 2005, Study on morphology of electrospun poly (caprolactone) nanofiber, Journal of Industrial and Engineering Chemistry, 11(4): p. 573-578.
  • 23. Wu C.M., Chiou H.G., Lin S.L., Lin J.M., 2012, Effects of electrostatic polarity and the types of electrical charging on electrospinning behavior, Journal of Applied Polymer Science, 126: p. E89-E97.
There are 23 citations in total.

Details

Other ID JA89CJ66HY
Journal Section Articles
Authors

Fatma Yalçınkaya This is me

Publication Date December 1, 2015
Submission Date December 1, 2015
Published in Issue Year 2015 Volume: 25 Issue: 3

Cite

APA Yalçınkaya, F. (2015). EFFECT OF CURRENT ON POLYMER JET IN ELECTROSPINNING PROCESS. Textile and Apparel, 25(3), 201-206.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.