BibTex RIS Cite

REJENERE SELÜLOZ ESASLI LiFLERDEN ÜRETiLEN ÇORAPLARIN KONFOR ÖZELLİKLERİ ÜZERINE BİR ARAŞTIRMA

Year 2014, Volume: 24 Issue: 1, 37 - 46, 01.06.2014

Abstract

Günümüzde müşteri memnuniyeti sürekli ön plana çıkmakta ve buna paralel olarak da alıcılar taleplerinde daha bilinçli davranmakta, daha nitelikli ürünler aramaktadırlar. Bu da giyenlerin çoraplardan beklentilerini sürekli arttırmaktadır. Bu nedenle çoraplar; moda ve ihtiyaçlara uygun olarak müşteri memnuniyetini karşılayacak şekilde tasarlanmalı, üretim sonrası özelliklerini kaybetmeden kullanım performansları yüksek olmalı ve özellikle sağlık açısından kullanılan lif özellikleri insan sağlığını olumsuz yönde etkilememelidir. Bu çalışmada; pamuk ve viskon gibi geleneksel elyaflar ile Bambu, Modal®, Promodal®, Mikromodal®, Keten-modal, lyocell® gibi yeni rejenere elyaf cinsleri kullanılarak örülmüş çoraplar yardımıyla konfor özelliklerine elyaf cinsinin katkısı, yeni elyaf cinslerinin kumaş konfor özelliklerine katkıda ne kadar başarılı olduğu ve kumaşın fiziksel performanslarını ne şekilde etkilendiği araştırılmıştır. Bu doğrultuda, çorapların konfor performanslarını belirleyip karsılaştırmak için çoraplarda konforu belirleyen parametreler olan su buharı geçirgenliği, ısı transferi, hava geçirgenliği, sıvı transferi, nem yönetimi gibi özellikler belirlenmeye çalışılmıştır. Ayrıca SPSS 15.0 for Microsoft programı kullanılarak, bulguların varyans analizi ile istatistiksel değerlendirmeleri yapılmıştır

References

  • 1 Slater, K., 1975, “Discussion Paper: The Assessment of Comfort”, Journal of Textile Institute, 77(3), pp:157-171.
  • 2 Sontag, S. M., 1985, “Comfort Dimensions of Actual and Ideal Isolative Clothing for Older Women”, Clothing and Textile Research Journal, 4(1), pp:9-17.
  • 3 Wang, Y., 2002, “Heat and Moisture Transfer and Clothing Thermal Comfort”, PhD Thesis, Hong Kong Polytechnic University, Hong Kong.
  • 4 Smith, J. E., 1993, “The Z Comfort of Clothing”, Textiles, 22(1), pp:18-20.
  • 5 Shivers, J., 1980, “Physical Measures of Clothing Comfort: A Literature Review”, Canadian Home Economics Journal, 30(4), pp:241-244.
  • 6 Barker, R. L., 2002, “From Fabric Hand to Thermal Comfort: The Evolving Role of Objective Measurements in Explaining Human Comfort”, Int. Journal of Clothing Science and Technology, 14(3/4), pp:181-200.
  • 7 Avcı, H., 2007, “Comfort Properties of Socks Produced from New Materials”, MSc Thesis, Institute of Science and Technology, İTÜ, Istanbul.
  • 8 Cimilli, S., 2007, “Modeling of Heat Transfer Behaviors of Socks Made From New Fibers Using Finite Element Method,” MSc Thesis. , Institute of Science and Technology, İTÜ, Istanbul.
  • 9 Oğlakcıoğlu, N., and Marmaralı, A., 2010, “Thermal Comfort Properties of Cotton Knitted Fabrics in Dry And Wet States”, Tekstil ve Konfeksiyon ,(3), pp:213-217.
  • 10 Namlıgöz, E. S., Çoban, S., Bahtiyari, M. İ., 2010, “Comparison of Moisture Transport Properties of the Various Woven Fabrics, Tekstil ve Konfeksiyon, (2), pp: 93-100.
  • 11 Ertekin, G., Marmaralı, A., 2011, “Heat, Air and Water Vapor Transfer Properties of Circular Knitted Spacer Fabrics, Tekstil ve Konfeksiyon, (4), pp:369-373.
  • 12 Mecheels, J. H., and Umbach, K. H., 1977, “The Psychometric Ranges of Clothing Systems, Clothing Comfort: Interactions of Thermal, Ventilation, Construction and Assessment Factors”, pp 133-166, Ann Arbor, MI:Ann Arbor Science Publishers,
  • 13 Oğlakçıoğlu, N., Marmaralı, A., 2008, “Effect of Regenerated Cellulose Fibers on the Thermal Comfort Properties of Compression Scoks”, The Journal of Textiles and Engineer, 17(77).
  • 14 Hes, L., 2001, “Fast Determination of Surface Moisture Absorptivity of Smart Underwear Knits”. Proceedings of International Textile Conference, Tarrasa, Spain.
  • 15 Hu, J., L,i Y., Yeung, K., Wong, A. S. W., Xu, W., 2005, “Moisture Management Tester: A Method To Characterize Fabric Liquid Moisture Management Properties”. Textile Research Journal. 75 (1); pp:57-62.
  • 16 Yao, B., Li, Y., Hu, J., Kwok, Y., Yeung, K., 2006, “An Improved Test Method for Characterizing The Dynamic Liquid Moisture Transfer in Porous Polymeric Materials”. Polymer Testing, 25, pp: 677-689.
  • 17 Barnes, J. C., and Holcombe, B. V., 1996, “Moisture Sorption and Transport in Clothing during Wear”, Textile Research Journal, Vol. 66, no. 12, pp:777-786.
  • 18 Berg, R. W., Milligan, M. C., and Sarbaugh, F. E., 1994, “Association of Skin Wetness and pH with Diaper Dermatitis”, Pediatr. Dermatol. Vol. 11, no. 1, pp:18-20.
  • 19 Campbell, R. L., Seymour, J. L., Stone, L. C., Milligan, M. C., 1987, “Clinical Studies with Disposable Diapers Containing Absorbent Gelling Materials: Evaluation of Effects on Infant Skin Condition”, J. Am. Acad. Dermatol. 17, pp:978-987.
  • 20 Davis, J. A., Leyden, J. J., Grove, G. L., and Raynor, W. J., 1989, “Comparison of Disposable Diapers with Fluff Absorbent and Fluff Plus Absorbent Polymers: Effects on Skin Hydration”, Skin pH, and Diaper Dermatitis. Pediatr. Dermatol. Vol. 6, no. 2, pp:102-108.
  • 21 Yoon, H. N., and Buckley, A., 1984, “Improved Comfort Polyester Part I: Transport Properties and Thermal Comfort of Polyester/Cotton Blend Fabrics”, Textile Research Journal, Vol. 54, no. 5, pp:289-298.
  • 22 Parer, O., 2011, “Comfort Studies of the Home Textiles which Lead Denizli Textile Industry”, MSc Thesis, Pamukkale Universitesi, Denizli. 23 ITC, SDL Atlas Ltd. and The Hong Kong Polytechnic University, 2005, “Moisture Management Tester Operation Manual Version 3.06, p. 2-6, 26-29, 55-58. Journal, 75(1), pp:57-62.
  • 24 Li, Y., Xu, W., Yeung, K. W. and Kwok, Y. L., 2002, “Moisture Management of Textiles”, United States Patent, No: US 6,499,338 B2 dated 31.12.
  • 25 AATCC Test Method 195-2009, “Liquid Moisture Management Properties of Textile Fabrics”, AATCC Technical Manual/2010, 362-363. 2009.
  • 26 ASTM D2654, “Standard Methods of Test for Moisture Content and Moisture Regain of Textile Material”, American Society for Testing and Materials International, PA, US. 1971.
  • 27 ASTM D737-04 “Standard Test Method for Air Permeability of Textile Fabrics”, American Society for Testing and Materials International, PA, US. , 2004.
  • 28 ASTM E96-00, “Standard Test Methods for Water Vapor Transmission of Materials”, American Society for Testing and Materials International, PA, US. 2000.
  • 29 BS 2544, “Methods for Determination of Thickness of Textile Materials”, 1991.
  • 30 DIN 53924, “Velocity of Suction of Textile Fabrics in Respect of Water Method Determining The Rising Height”, Deutches Istitut für Normung, Berlin, Germany, 1997.
  • 31 TS 391 EN ISO 9237, “Determination of air permeability in Fabrics”, The Institute of Turkish Standards, Ankara. 1999.
  • 32 TS EN ISO 12947 -2, “Determination of Abrasion Resistance of Fabrics according to Martindale Method”, The Institute of Turkish Standards, Ankara, 2001.

A SURVEY OF COMFORT PROPERTIES OF SOCKS PRODUCED FROM CELLULOSE-BASED FIBERS

Year 2014, Volume: 24 Issue: 1, 37 - 46, 01.06.2014

Abstract

Customer satisfaction has become the main point and consumers have become more aware of their demands and are seeking more qualified products. This makes consumers’ expectations get sophisticated about socks. Therefore, socks should be designed to meet customer satisfaction in accordance with fashion and functional needs; their performance should appeal to customer expectations and the fiber blend must not affect consumer health negatively. In this study, the effect of fiber blends on the comfort aspect of socks was investigated. Socks were knitted from traditional fibers like cotton and viscose and new regenerated fiber kinds like Bamboo, Modal®, Promodal®, Micromodal®, Linen-modal, Lyocell®. The effects of fiber types on the comfort and physical performances of socks were studied. So, parameters, which determine comfort in socks; like water vapor permeability, heat transfer, air permeability, liquid transfer, humidity management were determined. The findings were statistically evaluated with variance analysis by using SPSS 15.0 for Microsoft software

References

  • 1 Slater, K., 1975, “Discussion Paper: The Assessment of Comfort”, Journal of Textile Institute, 77(3), pp:157-171.
  • 2 Sontag, S. M., 1985, “Comfort Dimensions of Actual and Ideal Isolative Clothing for Older Women”, Clothing and Textile Research Journal, 4(1), pp:9-17.
  • 3 Wang, Y., 2002, “Heat and Moisture Transfer and Clothing Thermal Comfort”, PhD Thesis, Hong Kong Polytechnic University, Hong Kong.
  • 4 Smith, J. E., 1993, “The Z Comfort of Clothing”, Textiles, 22(1), pp:18-20.
  • 5 Shivers, J., 1980, “Physical Measures of Clothing Comfort: A Literature Review”, Canadian Home Economics Journal, 30(4), pp:241-244.
  • 6 Barker, R. L., 2002, “From Fabric Hand to Thermal Comfort: The Evolving Role of Objective Measurements in Explaining Human Comfort”, Int. Journal of Clothing Science and Technology, 14(3/4), pp:181-200.
  • 7 Avcı, H., 2007, “Comfort Properties of Socks Produced from New Materials”, MSc Thesis, Institute of Science and Technology, İTÜ, Istanbul.
  • 8 Cimilli, S., 2007, “Modeling of Heat Transfer Behaviors of Socks Made From New Fibers Using Finite Element Method,” MSc Thesis. , Institute of Science and Technology, İTÜ, Istanbul.
  • 9 Oğlakcıoğlu, N., and Marmaralı, A., 2010, “Thermal Comfort Properties of Cotton Knitted Fabrics in Dry And Wet States”, Tekstil ve Konfeksiyon ,(3), pp:213-217.
  • 10 Namlıgöz, E. S., Çoban, S., Bahtiyari, M. İ., 2010, “Comparison of Moisture Transport Properties of the Various Woven Fabrics, Tekstil ve Konfeksiyon, (2), pp: 93-100.
  • 11 Ertekin, G., Marmaralı, A., 2011, “Heat, Air and Water Vapor Transfer Properties of Circular Knitted Spacer Fabrics, Tekstil ve Konfeksiyon, (4), pp:369-373.
  • 12 Mecheels, J. H., and Umbach, K. H., 1977, “The Psychometric Ranges of Clothing Systems, Clothing Comfort: Interactions of Thermal, Ventilation, Construction and Assessment Factors”, pp 133-166, Ann Arbor, MI:Ann Arbor Science Publishers,
  • 13 Oğlakçıoğlu, N., Marmaralı, A., 2008, “Effect of Regenerated Cellulose Fibers on the Thermal Comfort Properties of Compression Scoks”, The Journal of Textiles and Engineer, 17(77).
  • 14 Hes, L., 2001, “Fast Determination of Surface Moisture Absorptivity of Smart Underwear Knits”. Proceedings of International Textile Conference, Tarrasa, Spain.
  • 15 Hu, J., L,i Y., Yeung, K., Wong, A. S. W., Xu, W., 2005, “Moisture Management Tester: A Method To Characterize Fabric Liquid Moisture Management Properties”. Textile Research Journal. 75 (1); pp:57-62.
  • 16 Yao, B., Li, Y., Hu, J., Kwok, Y., Yeung, K., 2006, “An Improved Test Method for Characterizing The Dynamic Liquid Moisture Transfer in Porous Polymeric Materials”. Polymer Testing, 25, pp: 677-689.
  • 17 Barnes, J. C., and Holcombe, B. V., 1996, “Moisture Sorption and Transport in Clothing during Wear”, Textile Research Journal, Vol. 66, no. 12, pp:777-786.
  • 18 Berg, R. W., Milligan, M. C., and Sarbaugh, F. E., 1994, “Association of Skin Wetness and pH with Diaper Dermatitis”, Pediatr. Dermatol. Vol. 11, no. 1, pp:18-20.
  • 19 Campbell, R. L., Seymour, J. L., Stone, L. C., Milligan, M. C., 1987, “Clinical Studies with Disposable Diapers Containing Absorbent Gelling Materials: Evaluation of Effects on Infant Skin Condition”, J. Am. Acad. Dermatol. 17, pp:978-987.
  • 20 Davis, J. A., Leyden, J. J., Grove, G. L., and Raynor, W. J., 1989, “Comparison of Disposable Diapers with Fluff Absorbent and Fluff Plus Absorbent Polymers: Effects on Skin Hydration”, Skin pH, and Diaper Dermatitis. Pediatr. Dermatol. Vol. 6, no. 2, pp:102-108.
  • 21 Yoon, H. N., and Buckley, A., 1984, “Improved Comfort Polyester Part I: Transport Properties and Thermal Comfort of Polyester/Cotton Blend Fabrics”, Textile Research Journal, Vol. 54, no. 5, pp:289-298.
  • 22 Parer, O., 2011, “Comfort Studies of the Home Textiles which Lead Denizli Textile Industry”, MSc Thesis, Pamukkale Universitesi, Denizli. 23 ITC, SDL Atlas Ltd. and The Hong Kong Polytechnic University, 2005, “Moisture Management Tester Operation Manual Version 3.06, p. 2-6, 26-29, 55-58. Journal, 75(1), pp:57-62.
  • 24 Li, Y., Xu, W., Yeung, K. W. and Kwok, Y. L., 2002, “Moisture Management of Textiles”, United States Patent, No: US 6,499,338 B2 dated 31.12.
  • 25 AATCC Test Method 195-2009, “Liquid Moisture Management Properties of Textile Fabrics”, AATCC Technical Manual/2010, 362-363. 2009.
  • 26 ASTM D2654, “Standard Methods of Test for Moisture Content and Moisture Regain of Textile Material”, American Society for Testing and Materials International, PA, US. 1971.
  • 27 ASTM D737-04 “Standard Test Method for Air Permeability of Textile Fabrics”, American Society for Testing and Materials International, PA, US. , 2004.
  • 28 ASTM E96-00, “Standard Test Methods for Water Vapor Transmission of Materials”, American Society for Testing and Materials International, PA, US. 2000.
  • 29 BS 2544, “Methods for Determination of Thickness of Textile Materials”, 1991.
  • 30 DIN 53924, “Velocity of Suction of Textile Fabrics in Respect of Water Method Determining The Rising Height”, Deutches Istitut für Normung, Berlin, Germany, 1997.
  • 31 TS 391 EN ISO 9237, “Determination of air permeability in Fabrics”, The Institute of Turkish Standards, Ankara. 1999.
  • 32 TS EN ISO 12947 -2, “Determination of Abrasion Resistance of Fabrics according to Martindale Method”, The Institute of Turkish Standards, Ankara, 2001.
There are 31 citations in total.

Details

Other ID JA88UT54ED
Journal Section Articles
Authors

Muhammet Akaydın This is me

Rukkiye Gül This is me

Publication Date June 1, 2014
Submission Date June 1, 2014
Published in Issue Year 2014 Volume: 24 Issue: 1

Cite

APA Akaydın, M., & Gül, R. (2014). A SURVEY OF COMFORT PROPERTIES OF SOCKS PRODUCED FROM CELLULOSE-BASED FIBERS. Textile and Apparel, 24(1), 37-46.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.