Research Article
BibTex RIS Cite

REJENERE SELÜLOZİK KUMAŞLARIN KURUMA DAVRANIŞININ MODELLENMESİ

Year 2017, Volume: 27 Issue: 4, 373 - 381, 27.12.2017

Abstract

Giysilerin terleme ile sonuçlanan herhangi bir aktivite sonrasındaki kuruma davranışları giysi konforu açısından büyük önem
taşımaktadır. Bu çalışmanın amacı, günlük ve spor giysilerde giderek artan kullanıma sahip rejenere selüloz liflerinden elde edilen
kumaşların kuruma kinetiklerinin analizi ve modellenmesidir. Kurutma denemeleri, modal ve liyosel kumaşların kuruma davranışlarının
benzer ve kuruma hızlarının viskon kumaşlara göre daha yüksek olduğunu göstermiştir. Nem yönetim testleri, rejenere selüloz
kumaşların kuruma davranışlarının direkt olarak sıvı nem yayma kapasitesiyle ilişkili olduğunu doğrulamıştır. Kuruma davranışının
modellenmesi için doğrusal regresyon ve ince-tabaka kurutma eşitliklerinin kombinasyonu olan iki aşamalı bir model yaklaşımı
kullanılmıştır. Logaritmik model, rejenere selüloz kumaşların azalan hızda kuruma periyodunu en uygun açıklayan eşitlik olarak
bulunmuştur. Ayrıca, önerilen modelin kuruma hızlarının hesaplanması için yeterliliği de kanıtlanmıştır.

References

  • 1. Jaturapiree A., Manian A.P. and Bechtold T, 2006, “Sorption studies on regenerated cellulosic fibers in salt–alkali mixtures”, Cellulose, Vol:13, pp:647- 654. 2. Lenzing, Annual Report 2015, Lenzing Aktiengesellschaft, Austria, http://www.lenzing.com/fileadmin/template/pdf/konzern/geschaftsberichte_ gb_ugb_jfb/B_EN/ GB_2015_E.pdf (Accessed: 11 November 2016). 3. Lenzing, Global fiber market, Megatrends, http://www.lenzing.com/en/investors /equity-story/global-fiber-market/megatrends.html (Accessed: 11 November 2016) 4. Wilkes A.G., 2001, “The viscose process”, In: Regenerated cellulose fibres, Woodings C. (Ed.), Woodhead Publishing Limited, England, pp 37-61. 5. Siroka B., Noisternig M., Griesser U.J. and Bechtold T., 2008, “Characterization of cellulosic fibers and fabrics by sorption/desorption”, Carbohydrate Research, Vol:343, pp:2194-2199. 6. White P., 2001, “Lyocell: the production process and market development”, In: Regenerated cellulose fibres, Woodings C. (Ed.), Woodhead Publishing Limited, England, pp 62-87. 7. Biganska O. and Navard P., 2009, “Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions”, Cellulose, Vol:16, pp:179-188. 8. Kreze T. and Malej S., 2003, “Structural characteristics of new and conventional regenerated cellulosic fibers”, Textile Research Journal, Vol:73(8), pp:675-684. 9. Bartels V.T., 2005, “Physiological comfort of sportswear”, In: Textiles in sport, Shishoo R. (Ed.), Woodhead Publishing Limited, Cambridge, England, pp 177-203. 10. Schuster K., Suchomel F., Manner J., Abu-Rous M. and Firgo H., 2006, “Functional and comfort properties of textiles from TENCEL® fibres resulting from the fibres’ water-absorbing nanostructure: A review”, Macromolecular Symposia, Vol:244, pp:149-165. 11. Oğlakcıoğlu N. and Marmaralı A., 2010, “Effects of regenerated cellulose fibers on thermal comfort properties of compression stockings”, The Journal of Textiles and Engineers, Vol:17(77), pp:6-12. 12. Demiroz Gun A., 2011, “Dimensional, physical and thermal comfort properties of plain knitted fabrics made from modal viscose yarns having microfibers and conventional fibers”, Fibers and Polymers, Vol:12(2), pp:258-267. 13. Cubric I.S., Skenderi Z. and Havenith G., 2013, “Impact of raw material, yarn and fabric parameters, and finishing on water vapor resistance”, Textile Research Journal, Vol:83(12), pp:1215-1228. 14. Özgen B. and Altaş S., 2014, “The investigation of thermal comfort, moisture management and handle properties of knitted fabrics made of various fibres”, Tekstil ve Konfeksiyon, Vol:24(3), pp:272-278. 15. Akaydın M. and Gül R., 2014, “A survey of comfort properties of socks produced from cellulose-based fibers”, Tekstil ve Konfeksiyon, Vol:24(1), pp:37- 46. 16. Oğlakcioğlu N., Sari B., Bedez Üte T. and Marmarali A., 2016, “A novel medical bandage with enhanced clothing comfort”, IOP Conference Series: Materials Science and Engineering, Vol:141, pp:1-6. 17. Cimilli S., Nergis B.U., Candan C. and Özdemir M., 2010, “A comparative study of some comfort-related properties of socks of different fiber types”, Textile Research Journal, Vol:80, pp:948-957. 18. Alay S. and Yılmaz D., 2010, “An investigation of knitted fabric performances obtained from different natural and regenerated fibres”, Journal of Engineering Science and Design, Vol:1(2), pp:91-95. 19. Oğlakcıoğlu N., Çay A., Marmaralı A. and Mert E., 2015, “Characteristics of knitted structures produced by engineered polyester yarns and their blends in terms of thermal comfort”, Journal of Engineered Fibers and Fabrics, Vol:10(1), pp:32-41. 20. Onofrei E., 2012, “Identification of the most significant factors influencing thermal comfort using principal component analysis and selection of the fabric according to the apparel end-use”, Industria Textilă, Vol:63(2), pp:91-96. 21. Sander A., 2007, “Thin-layer drying of porous materials: Selection of the appropriate mathematical model and relationships between thin-layer models parameters”, Chemical Engineering and Processing, Vol:46, pp:1324-1331. 22. Goyal R.K., Kingsly A.R.P., Manikantan M.R. and Ilyas S.M., 2007, “Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer”, Journal of Food Engineering, Vol:79, pp:176-180. 23. Kavak Akpinar E., 2006, “Determination of suitable thin layer drying curve model for some vegetables and fruits”, Journal of Food Engineering, Vol:73, pp:75-84. 24. Madamba P.S., Driscoll R.H. and Buckle K.A., 1996, “The thin-layer drying characteristics of garlic slices”, Journal of Food Engineering, Vol:29, pp:75-97. 25. Hossain M.A. and Bala B.K., 2002, “Thin-layer drying characteristics for green chilli”, Drying Technology, Vol:20, pp:489-502. 26. Türk Toğrul İ. and Pehlivan D., 2002, “Mathematical modelling of solar drying of apricots in thin layers”, Journal of Food Engineering, Vol:55, pp:209-216. 27. Ertekin C. and Yaldiz O., 2004, “Drying of eggplant and selection of a suitable thin layer drying model”, Journal of Food Engineering, Vol:63, pp:349-359. 28. Xanthopoulos G., Lambrinos Gr. and Manolopoulou H., 2007, “Evaluation of thin-layer models for mushroom (Agaricus bisporus) drying”, Drying Technology, Vol:25(9), pp:1471-1481. 29. Sander A. and Kardum J.P., 2009, “Experimental validation of thin-layer drying models”, Chemical Engineering & Technology, Vol:32(4), pp:590-599. 30. Erbay Z. and Icier F., 2010, “A review of thin layer drying of foods: theory, modeling, and experimental results”, Critical Reviews in Food Science and Nutrition, Vol:50(5), pp:441-464. 31. Nair G.R., Liplap P., Gariepy Y. and Raghavan G.S.V., 2011, “Microwave drying of flax fibre at controlled temperatures”, Journal of Agricultural Science and Technology B, Vol:1, pp:1103-1115. 32. Blanco-Cano L., Soria-Verdugo A., Garcia-Gutierrez L.M. and Ruiz-Rivas U., 2016, “Modeling the thin-layer drying process of Granny Smith apples: Application in an indirect solar dryer”, Applied Thermal Engineering, Vol:108, pp:1086-1094. 33. Kemp I.C., 2011, “Drying models, myths, and misconceptions”, Chemical Engineering & Technology, Vol:34(7), pp:1057-1066. 34. Akyol U., Kahveci K. and Cihan A., 2013, “Determination of optimum operating conditions and simulation of drying in a textile drying process”, The Journal of the Textile Institute, Vol:104(2), pp:170-177. 35. Akyol U., Akan A.E. and Durak A., 2015, “Simulation and thermodynamic analysis of a hot air textile drying process”, The Journal of the Textile Institute, Vol:106(3), pp:260-274. 36. Susantez Ç., Hacıhafızoğlu O. and Kahveci K., 2016, “Investigation of models of the yarn-bobbin drying process by determination of their parameters using genetic algorithm”, Textile Research Journal, doi: 10.1177/0040517516651100. 37. Çay A., Gurlek G. and Oglakcioglu N., 2017, Analysis and modelling of drying behaviour of knitted textile materials, Drying Technology, Vol:35(4), pp:509-521. 38. Supuren G., Oglakcioglu N., Ozdil N. and Marmarali A., 2011, “Moisture management and thermal absorptivity properties of double-face knitted fabrics”, Textile Research Journal, Vol:81(13), pp:1320-1330. 39. MMT, Moisture management tester manual. http://www.sdlatlas.com/media/manuals/ eng_MMT-ENG.pdf (Accessed: 14 November 2016). 40. Page G.E., 1949, Factors influencing the maximum rate of air drying shelled corn in thin layers, MSc Dissertation, Purdue University. 41. Diamante L.M. and Munro P.A., 1993, “Mathematical modelling of the thin layer solar drying of sweet potato slices”, Solar Energy, Vol:51, pp:271-276. 42. Henderson S.M. and Pabis S., 1961, “Grain drying theory I. Temperature effect on drying coefficient”, Journal of Agriculture Engineering Research, Vol:6(3), pp:169-174. 43. Watson E.L. and Bhargava V.K., 1974, “Thin layer studies on wheat”, Canadian Agricultural Engineering, Vol:16, pp:18-22. 44. Moss J.R. and Otten L., 1989, “A relationship between color development and moisture content during roasting of peanut”, Canadian Institute of Food Science and Technology Journal, Vol:22, pp:34-39. 45. Chandra P.K. and Singh R.P., 1995, Applied numerical methods for food and agricultural engineers, CRC Press, Boca Raton, FL. 46. Yagcioglu A., Degirmencioglu A. and Cagatay F. 1999, “Drying characteristics of laurel leaves under different conditions”, In: Proceedings of 7th international congress on agricultural mechanization and energy, Adana, Turkey, pp:565-569. 47. Henderson S.M., 1974, “Progress in developing the thin layer drying equation”, Transaction of the ASAE, Vol:17, pp:1167-1172. 48. Glenn T.L., 1978, Dynamic analysis of grain drying system, PhD Dissertation, Ohio State University. 49. Sharaf-Eldeen Y.I., Blaisdell J.L. and Hamdy M.Y., 1980, “A model for ear corn drying”, Transaction of the ASAE, Vol:23, pp:1261-1271. 50. Wang C.Y. and Singh R.P., 1978, “A single layer drying equation for rough rice”, ASAE Paper No.3001. 51. Kaseem A.S., 1998, “Comparative studies on thin layer drying models for wheat”, 13th International Congress on Agricultural Engineering, Morocco, pp:2- 6. 52. Midilli A., Kucuk H. and Yapar Z., 2002, “A new model for single-layer drying” Drying Technology, Vol:20(7), pp:1503-1513. 53. Stana-Kleinschek K., Kreze T., Ribitsch V. and Strnad S., 2001, “Reactivity and electrokinetical properties of different types of regenerated cellulose fibres”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol:195, pp:275-284. 54. Colom X. and Carrillo F., 2002, “Crystallinity changes in lyocell and viscose-type fibres by caustic treatment”, European Polymer Journal, Vol:38, pp:2225-2230. 55. Kreze T., Stana-Kleinschek K. and Ribitsch V., 2001, “The sorption behaviour of cellulose fibres”, Lenzinger Berichte, Vol:80, pp:28-33. 56. Persin Z., Stana-Kleinschek K. and Kreze T., 2002, “Hydrophilic/hydrophobic characteristics of different cellulose fibres monitored by tensiometry”, Croatica Chemica ACTA, Vol:75(1), pp:271-280. 57. Hussain T., Nazir A. and Masood R., 2015, “Liquid moisture management in knitted textiles – a review”, In: Proceedings of 3rd international conference on value addition & innovation in textiles (Covitex-2015), 27-28 March 2015, Pakistan, pp:15-26. 58. Das B., Das A., Kothari V.K., Fangueiro R. and de Araujo M., 2007, “Moisture transmission through textiles, Part II: Evaluation methods and mathematical modelling”, AUTEX Research Journal, Vol:7(3), pp:194-216. 59. Fangueiro R., Filgueiras A., Soutinho F. and Meidi X., 2010, “Wicking behavior and drying capability of functional knitted fabrics”, Textile Research Journal, Vol:80(15), pp:1522-1530. 60. Männer J., Schuster K.C., Suchomel F., Gürtler A. and Firgo H., 2004, “Higher performance with natural intelligence”, Lenzinger Berichte, Vol:83, pp:99- 110. 61. Abu-Rous M., Ingolic E. and Schuster K.C., 2006, “Visualisation of the nano-structure of Tencel® (lyocell) and other cellulosics as an approach to explaining functional and wellness properties in textiles”, Lenzinger Berichte, Vol:85, pp:31-37.

MODELLING OF THE DRYING BEHAVIOUR OF REGENERATED CELLULOSIC FABRICS

Year 2017, Volume: 27 Issue: 4, 373 - 381, 27.12.2017

Abstract

Drying behaviour of garments during wear after any activity resulted in sweating is of great importance in terms of clothing
comfort as well as heat and water vapour permeability for functional clothing design. The aim of this study is to analyze and model the
drying kinetics of regenerated cellulosic fabrics which have increasingly use in casual clothing and sportswear. Simulated drying
experiments showed that modal and lyocell fabrics have similar drying behaviour although their supramolecular arrangement is quite
different and drying rate is higher than viscose fabrics. Moisture management tests proved that the drying behaviour is directly
connected to the liquid moisture spreading capability of regenerated cellulosic fabrics. A two-stage modelling approach which is a
combination of linear fit and thin-layer drying equations was tested for modelling of drying behaviour. Logarithmic model was found to
be the best fitted equation to represent the falling-rate drying period of regenerated cellulosic fabrics. Moreover the sufficiency of the
proposed model for the computation of drying rate was also proved.

References

  • 1. Jaturapiree A., Manian A.P. and Bechtold T, 2006, “Sorption studies on regenerated cellulosic fibers in salt–alkali mixtures”, Cellulose, Vol:13, pp:647- 654. 2. Lenzing, Annual Report 2015, Lenzing Aktiengesellschaft, Austria, http://www.lenzing.com/fileadmin/template/pdf/konzern/geschaftsberichte_ gb_ugb_jfb/B_EN/ GB_2015_E.pdf (Accessed: 11 November 2016). 3. Lenzing, Global fiber market, Megatrends, http://www.lenzing.com/en/investors /equity-story/global-fiber-market/megatrends.html (Accessed: 11 November 2016) 4. Wilkes A.G., 2001, “The viscose process”, In: Regenerated cellulose fibres, Woodings C. (Ed.), Woodhead Publishing Limited, England, pp 37-61. 5. Siroka B., Noisternig M., Griesser U.J. and Bechtold T., 2008, “Characterization of cellulosic fibers and fabrics by sorption/desorption”, Carbohydrate Research, Vol:343, pp:2194-2199. 6. White P., 2001, “Lyocell: the production process and market development”, In: Regenerated cellulose fibres, Woodings C. (Ed.), Woodhead Publishing Limited, England, pp 62-87. 7. Biganska O. and Navard P., 2009, “Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions”, Cellulose, Vol:16, pp:179-188. 8. Kreze T. and Malej S., 2003, “Structural characteristics of new and conventional regenerated cellulosic fibers”, Textile Research Journal, Vol:73(8), pp:675-684. 9. Bartels V.T., 2005, “Physiological comfort of sportswear”, In: Textiles in sport, Shishoo R. (Ed.), Woodhead Publishing Limited, Cambridge, England, pp 177-203. 10. Schuster K., Suchomel F., Manner J., Abu-Rous M. and Firgo H., 2006, “Functional and comfort properties of textiles from TENCEL® fibres resulting from the fibres’ water-absorbing nanostructure: A review”, Macromolecular Symposia, Vol:244, pp:149-165. 11. Oğlakcıoğlu N. and Marmaralı A., 2010, “Effects of regenerated cellulose fibers on thermal comfort properties of compression stockings”, The Journal of Textiles and Engineers, Vol:17(77), pp:6-12. 12. Demiroz Gun A., 2011, “Dimensional, physical and thermal comfort properties of plain knitted fabrics made from modal viscose yarns having microfibers and conventional fibers”, Fibers and Polymers, Vol:12(2), pp:258-267. 13. Cubric I.S., Skenderi Z. and Havenith G., 2013, “Impact of raw material, yarn and fabric parameters, and finishing on water vapor resistance”, Textile Research Journal, Vol:83(12), pp:1215-1228. 14. Özgen B. and Altaş S., 2014, “The investigation of thermal comfort, moisture management and handle properties of knitted fabrics made of various fibres”, Tekstil ve Konfeksiyon, Vol:24(3), pp:272-278. 15. Akaydın M. and Gül R., 2014, “A survey of comfort properties of socks produced from cellulose-based fibers”, Tekstil ve Konfeksiyon, Vol:24(1), pp:37- 46. 16. Oğlakcioğlu N., Sari B., Bedez Üte T. and Marmarali A., 2016, “A novel medical bandage with enhanced clothing comfort”, IOP Conference Series: Materials Science and Engineering, Vol:141, pp:1-6. 17. Cimilli S., Nergis B.U., Candan C. and Özdemir M., 2010, “A comparative study of some comfort-related properties of socks of different fiber types”, Textile Research Journal, Vol:80, pp:948-957. 18. Alay S. and Yılmaz D., 2010, “An investigation of knitted fabric performances obtained from different natural and regenerated fibres”, Journal of Engineering Science and Design, Vol:1(2), pp:91-95. 19. Oğlakcıoğlu N., Çay A., Marmaralı A. and Mert E., 2015, “Characteristics of knitted structures produced by engineered polyester yarns and their blends in terms of thermal comfort”, Journal of Engineered Fibers and Fabrics, Vol:10(1), pp:32-41. 20. Onofrei E., 2012, “Identification of the most significant factors influencing thermal comfort using principal component analysis and selection of the fabric according to the apparel end-use”, Industria Textilă, Vol:63(2), pp:91-96. 21. Sander A., 2007, “Thin-layer drying of porous materials: Selection of the appropriate mathematical model and relationships between thin-layer models parameters”, Chemical Engineering and Processing, Vol:46, pp:1324-1331. 22. Goyal R.K., Kingsly A.R.P., Manikantan M.R. and Ilyas S.M., 2007, “Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer”, Journal of Food Engineering, Vol:79, pp:176-180. 23. Kavak Akpinar E., 2006, “Determination of suitable thin layer drying curve model for some vegetables and fruits”, Journal of Food Engineering, Vol:73, pp:75-84. 24. Madamba P.S., Driscoll R.H. and Buckle K.A., 1996, “The thin-layer drying characteristics of garlic slices”, Journal of Food Engineering, Vol:29, pp:75-97. 25. Hossain M.A. and Bala B.K., 2002, “Thin-layer drying characteristics for green chilli”, Drying Technology, Vol:20, pp:489-502. 26. Türk Toğrul İ. and Pehlivan D., 2002, “Mathematical modelling of solar drying of apricots in thin layers”, Journal of Food Engineering, Vol:55, pp:209-216. 27. Ertekin C. and Yaldiz O., 2004, “Drying of eggplant and selection of a suitable thin layer drying model”, Journal of Food Engineering, Vol:63, pp:349-359. 28. Xanthopoulos G., Lambrinos Gr. and Manolopoulou H., 2007, “Evaluation of thin-layer models for mushroom (Agaricus bisporus) drying”, Drying Technology, Vol:25(9), pp:1471-1481. 29. Sander A. and Kardum J.P., 2009, “Experimental validation of thin-layer drying models”, Chemical Engineering & Technology, Vol:32(4), pp:590-599. 30. Erbay Z. and Icier F., 2010, “A review of thin layer drying of foods: theory, modeling, and experimental results”, Critical Reviews in Food Science and Nutrition, Vol:50(5), pp:441-464. 31. Nair G.R., Liplap P., Gariepy Y. and Raghavan G.S.V., 2011, “Microwave drying of flax fibre at controlled temperatures”, Journal of Agricultural Science and Technology B, Vol:1, pp:1103-1115. 32. Blanco-Cano L., Soria-Verdugo A., Garcia-Gutierrez L.M. and Ruiz-Rivas U., 2016, “Modeling the thin-layer drying process of Granny Smith apples: Application in an indirect solar dryer”, Applied Thermal Engineering, Vol:108, pp:1086-1094. 33. Kemp I.C., 2011, “Drying models, myths, and misconceptions”, Chemical Engineering & Technology, Vol:34(7), pp:1057-1066. 34. Akyol U., Kahveci K. and Cihan A., 2013, “Determination of optimum operating conditions and simulation of drying in a textile drying process”, The Journal of the Textile Institute, Vol:104(2), pp:170-177. 35. Akyol U., Akan A.E. and Durak A., 2015, “Simulation and thermodynamic analysis of a hot air textile drying process”, The Journal of the Textile Institute, Vol:106(3), pp:260-274. 36. Susantez Ç., Hacıhafızoğlu O. and Kahveci K., 2016, “Investigation of models of the yarn-bobbin drying process by determination of their parameters using genetic algorithm”, Textile Research Journal, doi: 10.1177/0040517516651100. 37. Çay A., Gurlek G. and Oglakcioglu N., 2017, Analysis and modelling of drying behaviour of knitted textile materials, Drying Technology, Vol:35(4), pp:509-521. 38. Supuren G., Oglakcioglu N., Ozdil N. and Marmarali A., 2011, “Moisture management and thermal absorptivity properties of double-face knitted fabrics”, Textile Research Journal, Vol:81(13), pp:1320-1330. 39. MMT, Moisture management tester manual. http://www.sdlatlas.com/media/manuals/ eng_MMT-ENG.pdf (Accessed: 14 November 2016). 40. Page G.E., 1949, Factors influencing the maximum rate of air drying shelled corn in thin layers, MSc Dissertation, Purdue University. 41. Diamante L.M. and Munro P.A., 1993, “Mathematical modelling of the thin layer solar drying of sweet potato slices”, Solar Energy, Vol:51, pp:271-276. 42. Henderson S.M. and Pabis S., 1961, “Grain drying theory I. Temperature effect on drying coefficient”, Journal of Agriculture Engineering Research, Vol:6(3), pp:169-174. 43. Watson E.L. and Bhargava V.K., 1974, “Thin layer studies on wheat”, Canadian Agricultural Engineering, Vol:16, pp:18-22. 44. Moss J.R. and Otten L., 1989, “A relationship between color development and moisture content during roasting of peanut”, Canadian Institute of Food Science and Technology Journal, Vol:22, pp:34-39. 45. Chandra P.K. and Singh R.P., 1995, Applied numerical methods for food and agricultural engineers, CRC Press, Boca Raton, FL. 46. Yagcioglu A., Degirmencioglu A. and Cagatay F. 1999, “Drying characteristics of laurel leaves under different conditions”, In: Proceedings of 7th international congress on agricultural mechanization and energy, Adana, Turkey, pp:565-569. 47. Henderson S.M., 1974, “Progress in developing the thin layer drying equation”, Transaction of the ASAE, Vol:17, pp:1167-1172. 48. Glenn T.L., 1978, Dynamic analysis of grain drying system, PhD Dissertation, Ohio State University. 49. Sharaf-Eldeen Y.I., Blaisdell J.L. and Hamdy M.Y., 1980, “A model for ear corn drying”, Transaction of the ASAE, Vol:23, pp:1261-1271. 50. Wang C.Y. and Singh R.P., 1978, “A single layer drying equation for rough rice”, ASAE Paper No.3001. 51. Kaseem A.S., 1998, “Comparative studies on thin layer drying models for wheat”, 13th International Congress on Agricultural Engineering, Morocco, pp:2- 6. 52. Midilli A., Kucuk H. and Yapar Z., 2002, “A new model for single-layer drying” Drying Technology, Vol:20(7), pp:1503-1513. 53. Stana-Kleinschek K., Kreze T., Ribitsch V. and Strnad S., 2001, “Reactivity and electrokinetical properties of different types of regenerated cellulose fibres”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol:195, pp:275-284. 54. Colom X. and Carrillo F., 2002, “Crystallinity changes in lyocell and viscose-type fibres by caustic treatment”, European Polymer Journal, Vol:38, pp:2225-2230. 55. Kreze T., Stana-Kleinschek K. and Ribitsch V., 2001, “The sorption behaviour of cellulose fibres”, Lenzinger Berichte, Vol:80, pp:28-33. 56. Persin Z., Stana-Kleinschek K. and Kreze T., 2002, “Hydrophilic/hydrophobic characteristics of different cellulose fibres monitored by tensiometry”, Croatica Chemica ACTA, Vol:75(1), pp:271-280. 57. Hussain T., Nazir A. and Masood R., 2015, “Liquid moisture management in knitted textiles – a review”, In: Proceedings of 3rd international conference on value addition & innovation in textiles (Covitex-2015), 27-28 March 2015, Pakistan, pp:15-26. 58. Das B., Das A., Kothari V.K., Fangueiro R. and de Araujo M., 2007, “Moisture transmission through textiles, Part II: Evaluation methods and mathematical modelling”, AUTEX Research Journal, Vol:7(3), pp:194-216. 59. Fangueiro R., Filgueiras A., Soutinho F. and Meidi X., 2010, “Wicking behavior and drying capability of functional knitted fabrics”, Textile Research Journal, Vol:80(15), pp:1522-1530. 60. Männer J., Schuster K.C., Suchomel F., Gürtler A. and Firgo H., 2004, “Higher performance with natural intelligence”, Lenzinger Berichte, Vol:83, pp:99- 110. 61. Abu-Rous M., Ingolic E. and Schuster K.C., 2006, “Visualisation of the nano-structure of Tencel® (lyocell) and other cellulosics as an approach to explaining functional and wellness properties in textiles”, Lenzinger Berichte, Vol:85, pp:31-37.
There are 1 citations in total.

Details

Journal Section Articles
Authors

Ahmet Çay

Publication Date December 27, 2017
Submission Date January 18, 2017
Acceptance Date August 23, 2017
Published in Issue Year 2017 Volume: 27 Issue: 4

Cite

APA Çay, A. (2017). MODELLING OF THE DRYING BEHAVIOUR OF REGENERATED CELLULOSIC FABRICS. Textile and Apparel, 27(4), 373-381.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.