Research Article
BibTex RIS Cite

Zar Örgülü Kumaşların Gama Radyasyonu Kalkanlama Etkinliği Üzerine Bir Araştırma

Year 2018, Volume: 28 Issue: 1, 72 - 79, 31.03.2018

Abstract

Kurşun
kalkanlayıcı ürün olan kurşun önlükler, kurşunun zehirli olması gibi çeveresel
dezavantaja sahip olmasına rağmen, genellikle tıbbi işlemler esnasında doktorların
ve hastaların kişisel korunmasında kullanılmaktadırlar. Bu nedenle, bu
çalışmanın amacı çevre dostu ve esnek olan tekstil esaslı radrasyon
kalkanlayıcı materyal üretmektir. Bu çalışmada iletken özlü iplikler ile 1/3
dimi ve zar örgülü kumaşlar üretilmiş olup, zar örgülü kumaşların gama
radyasyonu kalkanlama etkinliği araştırılmış ve üniformalarda çok kullanılan ve
literatürde daha önce çalışılmamış olan 1/3 dimi örgülü kumaşların kalkanlama
etkinliği ile karşılaştırılmıştır.



Örgü,
kumaş kalınlığı, gözeneklilik ve iletken atkı ipliği sıklığı gibi kumaş yapısal
özelliklerinin gama radyasyonu kalkanlama etkinliği üzerine etkisi gama
radyasyonu kalkanlama fiziği ve istatistiklerle analiz edilmiştir. Deneysel
sonuçlar gama radyasyonu kalkanlama fiziği ile uyum göstermektedirler.
Girintili ve çıkıntılı yapıları ile zar örgülü kumaşların 1/3 dimi örgülü
kumaşlardan daha iyi gama radyasyonu kalkanlama etkinliği gösterdiği
gözlenmiştir. Zar örgü 4 ve 1 ile dokunan E1 ve B1 numuneleri kalın oldukları
ve düşük gözenekliliğe sahip oldukları için en yüksek gama radyasyonu kalkanlama
etkinliğine sahiptirler. Ek olarak, iletken özlü ipliğin sıklığının
artırılması, dokuma kumaşların gama radyasyonu kalkanlama etkinliğini
artırmıştır.

References

  • 1. Başer G., 2004, “Technique and Art of Weaving Vol.1”, Punto Publishing (in Turkish).
  • 2. Özdemir H. and Camgöz B., 2016, “Gamma radiation shielding effectiveness of cellular woven fabrics. Journal of Industrial Textiles”, DOI: 10.1177/1528083716670309, pp: 1-15.
  • 3. Hecth E., 2002, “Optics”, Pearson Education.
  • 4. Maiin J., Gentner N. and Pan Z., 1988, “Sources, Effects and Risks of Ionizing Radiation”, United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), United Nations: New York.
  • 5. Sainis K., Burns P., Metter F. and Holm L.E., 1993, “Exposure from Naturel Sources of Radiation”, United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), United Nations: New York.
  • 6. Yonekra Y., Pinillos Ashton L. and Holm, L.E., 2000, “Sources, Effects and Risks of Ionizing Radiation”, United Na-tions Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), United Nations: New York.
  • 7. ICRP, 1991, “1990 Recommendations of the International Commission on Radiological Protection”, ICRP Publication, 60 (Users’ Edition).
  • 8. Maghrabi H.A., Vijayan A., Deb P. and Wang L., 2016, “Bismuth Oxide-Coated Fabrics for X-Ray Shielding”, Textile Research Journal, Vol: 86(6), pp: 649-658.
  • 9. Aral N., Nergis F.B. and Candan C., 2015, “An alternative X-ray Shielding Material Based on Coated Textiles”, Textile Research Journal, Vol: 86(8), pp: 803-811.
  • 10. Qu L., Tian M., Zhang X., Guo X., Zhu S., Han G. and Li C., 2015, “Barium Sulfate/Regenerated Cellulose Composite Fiber with X-Ray Radiation Resistance”, Journal of Industrial Textiles, Vol: 45(3), pp: 352-367.
  • 11. Hseih Y.L., 1995, “Liquid Transport in Fabric Structures”, Textile Research Journal, Vol: 65(5), pp: 299-307.
  • 12. Balpardo C., Capoulat M.E., Rodrigues D. and Arenillas, P., 2009, “Standardization of Am-241by Digital Coincidence Counting, Liquid Scintillation Counting and Defined Solid Angle Counting”, Laboratorio de Metrología de Radio-isótopos, CNEA, Buenos Aires.

A Research on the Gamma Radiation Shielding Effectiveness of Diced Woven Fabrics

Year 2018, Volume: 28 Issue: 1, 72 - 79, 31.03.2018

Abstract

Lead
aprons are used for personal protection of physicians and patients from X-ray
(gamma) radiation during medical operations, though lead has environmental disadvantages,
with high toxicity. Therefore, the aim of this research was to produce an
environmentally friendly and flexible textile-based radiation shielding
material. In this work, 1/3 twill and certain diced woven fabrics were manufactured
with conductive core yarns, and gamma radiation shielding effectiveness of
these diced woven fabrics were investigated and compared with that of the 1/3
twill woven fabric, which are commonly used as uniforms and were not studied
previously in the literature.



The effects of fabric structural characteristics
such as weave, fabric thickness, porosity and conductive weft yarn density on
these properties were analyzed by the physics of gamma radiation shielding and
statistics. Experimental results are
compatible with
the physics of gamma radiation shielding. It is observed that with indenting
and protruding structure diced woven fabrics performed better gamma radiation
shielding performance than the 1/3 twill woven fabrics did. The samples E1 and
B1, woven with diced weave 4 and 1, have the highest gamma radiation shielding
effectiveness, thanks to the highest fabric thickness and to the lowest
porosity. In addition, the increases of conductive core yarn density improved
these gamma radiation shielding effectiveness of woven fabrics.

References

  • 1. Başer G., 2004, “Technique and Art of Weaving Vol.1”, Punto Publishing (in Turkish).
  • 2. Özdemir H. and Camgöz B., 2016, “Gamma radiation shielding effectiveness of cellular woven fabrics. Journal of Industrial Textiles”, DOI: 10.1177/1528083716670309, pp: 1-15.
  • 3. Hecth E., 2002, “Optics”, Pearson Education.
  • 4. Maiin J., Gentner N. and Pan Z., 1988, “Sources, Effects and Risks of Ionizing Radiation”, United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), United Nations: New York.
  • 5. Sainis K., Burns P., Metter F. and Holm L.E., 1993, “Exposure from Naturel Sources of Radiation”, United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), United Nations: New York.
  • 6. Yonekra Y., Pinillos Ashton L. and Holm, L.E., 2000, “Sources, Effects and Risks of Ionizing Radiation”, United Na-tions Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), United Nations: New York.
  • 7. ICRP, 1991, “1990 Recommendations of the International Commission on Radiological Protection”, ICRP Publication, 60 (Users’ Edition).
  • 8. Maghrabi H.A., Vijayan A., Deb P. and Wang L., 2016, “Bismuth Oxide-Coated Fabrics for X-Ray Shielding”, Textile Research Journal, Vol: 86(6), pp: 649-658.
  • 9. Aral N., Nergis F.B. and Candan C., 2015, “An alternative X-ray Shielding Material Based on Coated Textiles”, Textile Research Journal, Vol: 86(8), pp: 803-811.
  • 10. Qu L., Tian M., Zhang X., Guo X., Zhu S., Han G. and Li C., 2015, “Barium Sulfate/Regenerated Cellulose Composite Fiber with X-Ray Radiation Resistance”, Journal of Industrial Textiles, Vol: 45(3), pp: 352-367.
  • 11. Hseih Y.L., 1995, “Liquid Transport in Fabric Structures”, Textile Research Journal, Vol: 65(5), pp: 299-307.
  • 12. Balpardo C., Capoulat M.E., Rodrigues D. and Arenillas, P., 2009, “Standardization of Am-241by Digital Coincidence Counting, Liquid Scintillation Counting and Defined Solid Angle Counting”, Laboratorio de Metrología de Radio-isótopos, CNEA, Buenos Aires.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Berkay Camgöz This is me

Hakan Özdemir

Publication Date March 31, 2018
Submission Date January 17, 2017
Acceptance Date December 14, 2017
Published in Issue Year 2018 Volume: 28 Issue: 1

Cite

APA Camgöz, B., & Özdemir, H. (2018). A Research on the Gamma Radiation Shielding Effectiveness of Diced Woven Fabrics. Textile and Apparel, 28(1), 72-79.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.