Research Article
BibTex RIS Cite

EXPOSURE ANALYSIS OF ELECTROMAGNETIC SHIELD EFFECT OF A COPPER COMPOSITE CLOTH STRUCTURE

Year 2020, Volume: 30 Issue: 2, 138 - 143, 28.06.2020
https://doi.org/10.32710/tekstilvekonfeksiyon.628905

Abstract



The electromagnetic (EM) protection factor is defined as a ratio of EM
field intensity measured without the shielding material and field intensity
with the shielding material placed between EM radiation source and receiver.
This research is focused on SE durability of a composite cloth structure, where
the functional interlining polyamide fabric coated with copper IF was
integrated, after exposure to heat and moisture in steam-setting, ironing and
double compressing. The cloth composite structure was also exposed to solvent
in dry cleaning. It was proved that a synergy of thermal and mechanical actions
in ironing and pressing caused a drop of SE in the frequency range from 0.9 to
2.4 GHz. Increased number of dry cleaning cycles resulted in further reduction
of protective properties. Cross section and chemical analysis of IF before and
after 10 dry cleaning cycles are not harmonized with low durability of SE
properties in dry cleaning.
 



Project Number

IP-2018-01-70128

Thanks

This work has been supported in part by Croatian Science Foundation.

References

  • [1] Malarić, K. (2010). EMI Protection for Communication Systems, Boston, USA, Artech House, 685 Canton Street, Norwood, MA 02062.
  • [2] Ammari, M., Lecomte, A., Sakly, M., Abdelmelek, H., & de-Seze, R. (2008) Exposure to GSM 900 MHz Electromagnetic Fields Affects Cerebral Cytochrome Coxidase Activity, Toxicology, 250 (1), pp. 70-74.
  • [3] Sage, C., & Carpenter, D. O.,(2012, December). "A Rationale for Biologically-based Exposure Standards for Low-Intensity Electromagnetic Radiation”, BioInitiative, USA.
  • [4] Shahin, S., Banerjee, S., Singh, S.P., & Chaturvedi, C.M. (2015). “2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative, Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism”, Toxicol Sci, 148, pp. 380–399.
  • [5] Shangcheng, X., Zhou, Z., Lei, Z., Zhengping, Y., Wei, Z., Yuan, W., and Min, Z., (2010). “Exposure to 1800 MHz Radiofrequency Radiation Induces Oxidative Damage to Mitochondrial DNA in Primary Cultured Neurons”, Brain Research, 1311, pp. 189-196.
  • [6] Ahamed, V. I., Karthick, N.G., & Joseph P.K., (2008). “Effect of Mobile Phone Radiation on Heart Rate Variability”, Computers in Biology and Medicine 38 (6), pp. 709-712.
  • [7] Manzetti, S., & Johansson, O. (2012). Global electromagnetic toxicity and frequency-induced diseases: theory and short overview. Pathophysiology, (19), pp.185-191.
  • [8] Politanski, P., Bortkiewicz, A., & Zmyslony, M. (2016) Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements. Med Pr, 67. pp. 411–421
  • [9] Vanderstraeten, J., (2009). GSM Fields and Health: an Updated Literature Review, Rev Med Brux, 4, pp. 416-424.
  • [10] Ozen, M. S., Usta, I., Beyit, A., Uzun, M., Sancak, E., & Isgoren, E. (2012, July). An Investigation of Electromagnetic Wave Absorption Potential of Woven Fabrics with Stainless Steel Wire, RMUTP International Conference Textiles & Fashion 2012, Bangkok, Thailand.
  • [11] Duran, D., & Kadoglu, H. (2012). A Research on Electromagnetic Shielding with Copper Core Yarns, Tekstil ve Konfeksiyon, (4), pp. 354-359.
  • [12] Brzezinski, S., Rybicki, T., Karbownik, I., Malinowska, G., Rybicki, E., Szugajew, L., Śledzińska, K., (2009). Textile Multi-layer Systems for Protection Against Electromagnetic Radiation, Fibres & Textiles in Eastern Europe, 73, 17 (2), pp. 66-71.
  • [13] Koprowska, J., Pietranik, M., & Stawski, W. (2004). New Type of Textiles with Shielding Properties, Fibres & Textiles in Eastern Europe, 12 (3), pp. 39-42.
  • [14] Ceken, F., Kayacan, O., Ozkurt, A., & Ugurlu, S. S. (2011). The Electromagnetic Shielding Properties of Copper and Stainless Steel Knitted Fabrics, Tekstil, 60 (7), pp. 295-354.
  • [15] Ceken, F., Pamuk, G., Kayacan, O., Ozkurt, A., Ugurlu, S. S. (2012) Electromagnetic Shielding Properties of Plain Knitted Fabrics Containing Conductive Yarns, Journal of Engineered Fibers and Fabrics, 7 (4), pp. 81-87.
  • [16] Sonehara, M., Noguchi, S., Kurashina, T., Sato, T., Yamasawa, K., & Miura, Y. (2009). Development of an Electromagnetic Wave Shielding Textile by Electroless Ni-Based Alloy Plating, IEEE Transactions on Magnetics, 45 (10), pp. 4173-4175.
  • [17] Duran, D., & Kadoglu, H. (2010, October). Protection Against Electromagnetic Waves with Textiles, Book ogf Proceedings 5th International Textile, Clothing & Design Conference – Magic World of Textiles, Dubrovnik, Croatia, pp. 231-234.
  • [18] Ozdemir, H., & Ozkurt, A., (2013). The Effects of Fabric Structural Parameters on the Electromagnetic Shielding Effectiveness, Tekstil, 62 (3-4), pp. 134-144.
  • [19] Das, A., Kothari, V. K., Kothari, A., & Kumar, A. (2009) Effect of Various Parameters on Electromagnetic Shielding Effectivenes of Textile Fabrics, Indian Journal of Fibers & Textile Research, 34 (6), pp. 144-148.
  • [20] Cheng, K. B., Cheng, T. W., Nadaraj, R. N., Giri Dev, V. R., & Neelakandan, R. (2006). Electromagnetic Shielding Effectiveness of the Twill Copper Woven Fabrics, Journal of Reinforced Plastics and Composites, 25 (7), pp. 699-709.
  • [21] Sonehara, M., Sato, T., Takasaki, M., & Konishi, H. (2008) Preparation and Characterization of Nanofiber Nonwoven Textile for Electromagnetic Wave Shielding, IEEE Transactions on Magnetics, 44 (11), pp. 3107-3110.
  • [22] Tunakova, V., Technikova, L. & Militky, J. (2017) Influence of washing/drying cycles on fundamental properties of metal-fiber contained fabric designed for electromagnetic shielding purposes, Textile Research Journal, 87 (2) pp. 175–192.
  • [23] ASTM D-4935-89 Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, 1999.
  • [24] IEEE STD 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures, 299, 2006.
  • [25] MIL-STD-285, Military Standard: Attenuation Measurements for Enclosures, Electromagnetic Shielding, 1956.
  • [26] Šaravanja, B., Malarić, K., Pušić, T., Ujević, D. (2015) Shield Effect of Functional Interlining Fabric, Autex Research Journal, 15 (2) pp. 93-98.
Year 2020, Volume: 30 Issue: 2, 138 - 143, 28.06.2020
https://doi.org/10.32710/tekstilvekonfeksiyon.628905

Abstract

Project Number

IP-2018-01-70128

References

  • [1] Malarić, K. (2010). EMI Protection for Communication Systems, Boston, USA, Artech House, 685 Canton Street, Norwood, MA 02062.
  • [2] Ammari, M., Lecomte, A., Sakly, M., Abdelmelek, H., & de-Seze, R. (2008) Exposure to GSM 900 MHz Electromagnetic Fields Affects Cerebral Cytochrome Coxidase Activity, Toxicology, 250 (1), pp. 70-74.
  • [3] Sage, C., & Carpenter, D. O.,(2012, December). "A Rationale for Biologically-based Exposure Standards for Low-Intensity Electromagnetic Radiation”, BioInitiative, USA.
  • [4] Shahin, S., Banerjee, S., Singh, S.P., & Chaturvedi, C.M. (2015). “2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative, Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism”, Toxicol Sci, 148, pp. 380–399.
  • [5] Shangcheng, X., Zhou, Z., Lei, Z., Zhengping, Y., Wei, Z., Yuan, W., and Min, Z., (2010). “Exposure to 1800 MHz Radiofrequency Radiation Induces Oxidative Damage to Mitochondrial DNA in Primary Cultured Neurons”, Brain Research, 1311, pp. 189-196.
  • [6] Ahamed, V. I., Karthick, N.G., & Joseph P.K., (2008). “Effect of Mobile Phone Radiation on Heart Rate Variability”, Computers in Biology and Medicine 38 (6), pp. 709-712.
  • [7] Manzetti, S., & Johansson, O. (2012). Global electromagnetic toxicity and frequency-induced diseases: theory and short overview. Pathophysiology, (19), pp.185-191.
  • [8] Politanski, P., Bortkiewicz, A., & Zmyslony, M. (2016) Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements. Med Pr, 67. pp. 411–421
  • [9] Vanderstraeten, J., (2009). GSM Fields and Health: an Updated Literature Review, Rev Med Brux, 4, pp. 416-424.
  • [10] Ozen, M. S., Usta, I., Beyit, A., Uzun, M., Sancak, E., & Isgoren, E. (2012, July). An Investigation of Electromagnetic Wave Absorption Potential of Woven Fabrics with Stainless Steel Wire, RMUTP International Conference Textiles & Fashion 2012, Bangkok, Thailand.
  • [11] Duran, D., & Kadoglu, H. (2012). A Research on Electromagnetic Shielding with Copper Core Yarns, Tekstil ve Konfeksiyon, (4), pp. 354-359.
  • [12] Brzezinski, S., Rybicki, T., Karbownik, I., Malinowska, G., Rybicki, E., Szugajew, L., Śledzińska, K., (2009). Textile Multi-layer Systems for Protection Against Electromagnetic Radiation, Fibres & Textiles in Eastern Europe, 73, 17 (2), pp. 66-71.
  • [13] Koprowska, J., Pietranik, M., & Stawski, W. (2004). New Type of Textiles with Shielding Properties, Fibres & Textiles in Eastern Europe, 12 (3), pp. 39-42.
  • [14] Ceken, F., Kayacan, O., Ozkurt, A., & Ugurlu, S. S. (2011). The Electromagnetic Shielding Properties of Copper and Stainless Steel Knitted Fabrics, Tekstil, 60 (7), pp. 295-354.
  • [15] Ceken, F., Pamuk, G., Kayacan, O., Ozkurt, A., Ugurlu, S. S. (2012) Electromagnetic Shielding Properties of Plain Knitted Fabrics Containing Conductive Yarns, Journal of Engineered Fibers and Fabrics, 7 (4), pp. 81-87.
  • [16] Sonehara, M., Noguchi, S., Kurashina, T., Sato, T., Yamasawa, K., & Miura, Y. (2009). Development of an Electromagnetic Wave Shielding Textile by Electroless Ni-Based Alloy Plating, IEEE Transactions on Magnetics, 45 (10), pp. 4173-4175.
  • [17] Duran, D., & Kadoglu, H. (2010, October). Protection Against Electromagnetic Waves with Textiles, Book ogf Proceedings 5th International Textile, Clothing & Design Conference – Magic World of Textiles, Dubrovnik, Croatia, pp. 231-234.
  • [18] Ozdemir, H., & Ozkurt, A., (2013). The Effects of Fabric Structural Parameters on the Electromagnetic Shielding Effectiveness, Tekstil, 62 (3-4), pp. 134-144.
  • [19] Das, A., Kothari, V. K., Kothari, A., & Kumar, A. (2009) Effect of Various Parameters on Electromagnetic Shielding Effectivenes of Textile Fabrics, Indian Journal of Fibers & Textile Research, 34 (6), pp. 144-148.
  • [20] Cheng, K. B., Cheng, T. W., Nadaraj, R. N., Giri Dev, V. R., & Neelakandan, R. (2006). Electromagnetic Shielding Effectiveness of the Twill Copper Woven Fabrics, Journal of Reinforced Plastics and Composites, 25 (7), pp. 699-709.
  • [21] Sonehara, M., Sato, T., Takasaki, M., & Konishi, H. (2008) Preparation and Characterization of Nanofiber Nonwoven Textile for Electromagnetic Wave Shielding, IEEE Transactions on Magnetics, 44 (11), pp. 3107-3110.
  • [22] Tunakova, V., Technikova, L. & Militky, J. (2017) Influence of washing/drying cycles on fundamental properties of metal-fiber contained fabric designed for electromagnetic shielding purposes, Textile Research Journal, 87 (2) pp. 175–192.
  • [23] ASTM D-4935-89 Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, 1999.
  • [24] IEEE STD 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures, 299, 2006.
  • [25] MIL-STD-285, Military Standard: Attenuation Measurements for Enclosures, Electromagnetic Shielding, 1956.
  • [26] Šaravanja, B., Malarić, K., Pušić, T., Ujević, D. (2015) Shield Effect of Functional Interlining Fabric, Autex Research Journal, 15 (2) pp. 93-98.
There are 26 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Bosiljka šaravanja

Krešimir Malarić This is me

Tanja Pušić This is me

Darko Ujević This is me

Project Number IP-2018-01-70128
Publication Date June 28, 2020
Submission Date October 3, 2019
Acceptance Date May 22, 2020
Published in Issue Year 2020 Volume: 30 Issue: 2

Cite

APA šaravanja, B., Malarić, K., Pušić, T., Ujević, D. (2020). EXPOSURE ANALYSIS OF ELECTROMAGNETIC SHIELD EFFECT OF A COPPER COMPOSITE CLOTH STRUCTURE. Textile and Apparel, 30(2), 138-143. https://doi.org/10.32710/tekstilvekonfeksiyon.628905

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.