Research Article
BibTex RIS Cite
Year 2020, Volume: 30 Issue: 2, 156 - 162, 28.06.2020
https://doi.org/10.32710/tekstilvekonfeksiyon.638198

Abstract

References

  • 1 Roh, J. S., Chi, Y. S., Kang, T. J., & Nam, S. W. (2008). Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Textile Research Journal, 78(9), 825–835.
  • 2 Özkan, I., & Telli, A. (2019). The effects of metal type, number of layers, and hybrid yarn placement on the absorption and reflection properties in electromagnetic shielding of woven fabrics. Journal of Engineered Fibers and Fabrics, 14, 1-13.
  • 3 Brzeziński, S., Rybicki, T., Karbownik, I., Malinowska, G., & Śledzińska, K. (2012). Textile materials for electromagnetic field shielding made with the use of nano-and micro-technology. Open Physics, 10(5), 1190-1196. Su, C. I., & Chern, J. T. (2004). Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Textile Research Journal, 74(1), 51-54.
  • 4 Su, C. I., & Chern, J. T. (2004). Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Textile Research Journal, 74(1), 51-54.
  • 5 Cheng, K. B., Cheng, T. W., Nadaraj, R. N., Dev, V. G., & Neelakandan, R. (2006). Electromagnetic shielding effectiveness of the twill copper woven fabrics. Journal of Reinforced Plastics and Composites, 25(7), 699-709.
  • 6 Perumalraj, R., Dasaradan, B. S., Anbarasu, R., Arokiaraj, P., & Harish, S. L. (2009). Electromagnetic shielding effectiveness of copper core-woven fabrics. The Journal of The Textile Institute, 100(6), 512-524.
  • 7 Ortlek, H. G., Kilic, G., Okyay, G., & Bilgin, S. (2011). Electromagnetic shielding characteristics of different fabrics knitted from yarns containing stainless steel wire. Industria Textila, 62(6), 304-308.
  • 8 Rajendrakumar, K., & Thilagavathi, G. (2012). Electromagnetic shielding effectiveness of copper/PET composite yarn fabrics. Ind J Fiber Textile Res 2012; 37(2): 133–137.
  • 9 Duran D. and Kadoǧlu H., 2012. Research on electromagnetic shielding with copper core yarns, Tekstil ve Konfeksiyon, 22(4), 354–359.
  • 10 Duran D. and Kadoğlu H., 2015. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns, Textile Research Journal, 85(10), 1009–1021.
  • 11 Ortlek, H. G., Alpyildiz, T., & Kilic, G. (2013). Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method. Textile Research Journal, 83(1), 90-99.
  • 12 Hwang, P. W., Chen, A. P., Lou, C. W., & Lin, J. H. (2014). Electromagnetic shielding effectiveness and functions of stainless steel/bamboo charcoal conductive fabrics. Journal of Industrial Textiles, 44(3), 477-494.
  • 13 Yu, Z. C., Zhang, J. F., Lou, C. W., He, H. L., Chen, A. P., & Lin, J. H. (2015). Determination of electromagnetic shielding and antibacterial properties of multifunctional warp-knitted fabrics. The Journal of The Textile Institute, 106(11), 1203-1211.
  • 14 Lin, J. H., Jhang, J. C., Lin, T. A., Huang, S. Y., Chen, Y. S., & Lou, C. W. (2017). Manufacturing techniques, mechanical properties, far infrared emissivity, and electromagnetic shielding effectiveness of stainless steel/polyester/bamboo charcoal knits. Fibers and Polymers, 18(3), 597-604.
  • 15 Jagatheesan, K., Ramasamy, A., Das, A., & Basu, A. (2018). Electromagnetic shielding effectiveness of carbon/stainless steel/polypropylene hybrid yarn-based knitted fabrics and their composites. The journal of the Textile Institute, 109(11), 1445-1457.
  • 16 Volski, V., & Vandenbosch, G. A. (2009). Full-wave electromagnetic modelling of fabrics and composites. Composites Science and Technology, 69(2), 161-168.
  • 17 Priniotakis, G., Sfyroera, E., Symeonidis, S., Mitilineos, S. A., Vassiliadis, S., Zafeiri, C., & Moudatsou, S. (2018). Effects of different conductive yarns’ knitting structure on electromagnetic shielding effectiveness. IOP Conference Series: Materials Science and Engineering, 459(1), 1-6.
  • 18 Özkan, İ., Duru Baykal, P., & Karaaslan, M. (2019). Investigation of electromagnetic shielding properties of metal composite tufted carpets. The Journal of The Textile Institute, 1-8.
  • 19 Chen, H. C., Lee, K. C., Lin, J. H., & Koch, M. (2007). Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. Journal of Materials Processing Technology, 184(1-3), 124-130.
  • 20 Liang, R., Cheng, W., Xiao, H., Shi, M., Tang, Z., & Wang, N. (2018). A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Textile Research Journal, 88(9), 973-986.
  • 21 Tong, H., Zhu, G., & Mao, W. (2011). Development of EMI shielding materials characterized by low secondary electromagnetic radiation pollution. Second International Conference on Mechanic Automation and Control Engineering, 2075-2077.
  • 22 Jiang, W., Yan, L., Ma, H., Fan, Y., Wang, J., Feng, M., & Qu, S. (2018). Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Scientific reports, 8(1), 4817.
  • 23 Hollander M., Wolfe D., and Chicken E. (2013). Nonparametric statistical methods. Hoboken, NJ: John Wiley & Sons.
  • 24 Sheskin D. J. (2003). Handbook of Parametric and Nonparametric Statistical Procedures. New York: CRC Press.
  • 25 Ceken, F., Kayacan, Ö., Özkurt, A., & Uğurlu, Ş. S. (2012). The electromagnetic shielding properties of some conductive knitted fabrics produced on single or double needle bed of a flat knitting machine. Journal of the Textile Institute, 103(9), 968-979.
  • 26 Mühl, T. and Obelenski, B. (2004). Knitted and warp-knitted fabrics offering electromagnetic shielding, Melliand Textilberichte, 85, 7-8.
  • 27 Lou, C. W., Lin, T. A., Chen, A. P., & Lin, J. H. (2016). Stainless steel/polyester woven fabrics and copper/polyester woven fabrics: Manufacturing techniques and electromagnetic shielding effectiveness. Journal of Industrial Textiles, 46(1), 214-236.
  • 28 Asghar, A., Ahmad, M. R., Yahya, M. F., Ali, M. T., Ab Aziz, A. A., Abd Rahman, N. H., Zameer Ul Hassan, S. & Kashif, M. (2018). An alternative approach to design conductive hybrid cover yarns for efficient electromagnetic shielding fabrics. Journal of Industrial Textiles, 48(1), 38-57.
  • 29 Tokarska, M., & Orpel, M. (2019). Study of anisotropic electrical resistance of knitted fabrics. Textile Research Journal, 89(6), 1073-1083.

INVESTIGATION ON THE ELECTROMAGNETIC SHIELDING PERFORMANCE OF COPPER PLATE AND COPPER COMPOSITE FABRICS: A COMPARATIVE STUDY

Year 2020, Volume: 30 Issue: 2, 156 - 162, 28.06.2020
https://doi.org/10.32710/tekstilvekonfeksiyon.638198

Abstract

Recently, the advantages of protective textile
materials such as cost effectiveness, flexibility, lightweight etc. over metal
plates are emphasized in many studies. However, these studies did not provide a
comparison of protective performances between fabrics and metal plates. In this
study, electromagnetic shielding performances of copper plate and metal
composite woven/knitted fabrics were compared. For this purpose,
electromagnetic shielding effectiveness of single and double layer copper plate
and metal composite fabrics were measured in vertical and horizontal
directions. As a result, copper plate showed better performance than composite
fabric samples in both measurement directions. However, the composite fabrics
did not show an effective performance in horizontal direction. EMSE behavior of
copper plate was similar for both direction due to the isotropic structure and
this performance maintained in higher frequency level. On the other hand, gaps
in the structure of composite fabrics caused the decreasing in EMSE performance
against increasing frequency.

References

  • 1 Roh, J. S., Chi, Y. S., Kang, T. J., & Nam, S. W. (2008). Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Textile Research Journal, 78(9), 825–835.
  • 2 Özkan, I., & Telli, A. (2019). The effects of metal type, number of layers, and hybrid yarn placement on the absorption and reflection properties in electromagnetic shielding of woven fabrics. Journal of Engineered Fibers and Fabrics, 14, 1-13.
  • 3 Brzeziński, S., Rybicki, T., Karbownik, I., Malinowska, G., & Śledzińska, K. (2012). Textile materials for electromagnetic field shielding made with the use of nano-and micro-technology. Open Physics, 10(5), 1190-1196. Su, C. I., & Chern, J. T. (2004). Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Textile Research Journal, 74(1), 51-54.
  • 4 Su, C. I., & Chern, J. T. (2004). Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Textile Research Journal, 74(1), 51-54.
  • 5 Cheng, K. B., Cheng, T. W., Nadaraj, R. N., Dev, V. G., & Neelakandan, R. (2006). Electromagnetic shielding effectiveness of the twill copper woven fabrics. Journal of Reinforced Plastics and Composites, 25(7), 699-709.
  • 6 Perumalraj, R., Dasaradan, B. S., Anbarasu, R., Arokiaraj, P., & Harish, S. L. (2009). Electromagnetic shielding effectiveness of copper core-woven fabrics. The Journal of The Textile Institute, 100(6), 512-524.
  • 7 Ortlek, H. G., Kilic, G., Okyay, G., & Bilgin, S. (2011). Electromagnetic shielding characteristics of different fabrics knitted from yarns containing stainless steel wire. Industria Textila, 62(6), 304-308.
  • 8 Rajendrakumar, K., & Thilagavathi, G. (2012). Electromagnetic shielding effectiveness of copper/PET composite yarn fabrics. Ind J Fiber Textile Res 2012; 37(2): 133–137.
  • 9 Duran D. and Kadoǧlu H., 2012. Research on electromagnetic shielding with copper core yarns, Tekstil ve Konfeksiyon, 22(4), 354–359.
  • 10 Duran D. and Kadoğlu H., 2015. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns, Textile Research Journal, 85(10), 1009–1021.
  • 11 Ortlek, H. G., Alpyildiz, T., & Kilic, G. (2013). Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method. Textile Research Journal, 83(1), 90-99.
  • 12 Hwang, P. W., Chen, A. P., Lou, C. W., & Lin, J. H. (2014). Electromagnetic shielding effectiveness and functions of stainless steel/bamboo charcoal conductive fabrics. Journal of Industrial Textiles, 44(3), 477-494.
  • 13 Yu, Z. C., Zhang, J. F., Lou, C. W., He, H. L., Chen, A. P., & Lin, J. H. (2015). Determination of electromagnetic shielding and antibacterial properties of multifunctional warp-knitted fabrics. The Journal of The Textile Institute, 106(11), 1203-1211.
  • 14 Lin, J. H., Jhang, J. C., Lin, T. A., Huang, S. Y., Chen, Y. S., & Lou, C. W. (2017). Manufacturing techniques, mechanical properties, far infrared emissivity, and electromagnetic shielding effectiveness of stainless steel/polyester/bamboo charcoal knits. Fibers and Polymers, 18(3), 597-604.
  • 15 Jagatheesan, K., Ramasamy, A., Das, A., & Basu, A. (2018). Electromagnetic shielding effectiveness of carbon/stainless steel/polypropylene hybrid yarn-based knitted fabrics and their composites. The journal of the Textile Institute, 109(11), 1445-1457.
  • 16 Volski, V., & Vandenbosch, G. A. (2009). Full-wave electromagnetic modelling of fabrics and composites. Composites Science and Technology, 69(2), 161-168.
  • 17 Priniotakis, G., Sfyroera, E., Symeonidis, S., Mitilineos, S. A., Vassiliadis, S., Zafeiri, C., & Moudatsou, S. (2018). Effects of different conductive yarns’ knitting structure on electromagnetic shielding effectiveness. IOP Conference Series: Materials Science and Engineering, 459(1), 1-6.
  • 18 Özkan, İ., Duru Baykal, P., & Karaaslan, M. (2019). Investigation of electromagnetic shielding properties of metal composite tufted carpets. The Journal of The Textile Institute, 1-8.
  • 19 Chen, H. C., Lee, K. C., Lin, J. H., & Koch, M. (2007). Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. Journal of Materials Processing Technology, 184(1-3), 124-130.
  • 20 Liang, R., Cheng, W., Xiao, H., Shi, M., Tang, Z., & Wang, N. (2018). A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Textile Research Journal, 88(9), 973-986.
  • 21 Tong, H., Zhu, G., & Mao, W. (2011). Development of EMI shielding materials characterized by low secondary electromagnetic radiation pollution. Second International Conference on Mechanic Automation and Control Engineering, 2075-2077.
  • 22 Jiang, W., Yan, L., Ma, H., Fan, Y., Wang, J., Feng, M., & Qu, S. (2018). Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Scientific reports, 8(1), 4817.
  • 23 Hollander M., Wolfe D., and Chicken E. (2013). Nonparametric statistical methods. Hoboken, NJ: John Wiley & Sons.
  • 24 Sheskin D. J. (2003). Handbook of Parametric and Nonparametric Statistical Procedures. New York: CRC Press.
  • 25 Ceken, F., Kayacan, Ö., Özkurt, A., & Uğurlu, Ş. S. (2012). The electromagnetic shielding properties of some conductive knitted fabrics produced on single or double needle bed of a flat knitting machine. Journal of the Textile Institute, 103(9), 968-979.
  • 26 Mühl, T. and Obelenski, B. (2004). Knitted and warp-knitted fabrics offering electromagnetic shielding, Melliand Textilberichte, 85, 7-8.
  • 27 Lou, C. W., Lin, T. A., Chen, A. P., & Lin, J. H. (2016). Stainless steel/polyester woven fabrics and copper/polyester woven fabrics: Manufacturing techniques and electromagnetic shielding effectiveness. Journal of Industrial Textiles, 46(1), 214-236.
  • 28 Asghar, A., Ahmad, M. R., Yahya, M. F., Ali, M. T., Ab Aziz, A. A., Abd Rahman, N. H., Zameer Ul Hassan, S. & Kashif, M. (2018). An alternative approach to design conductive hybrid cover yarns for efficient electromagnetic shielding fabrics. Journal of Industrial Textiles, 48(1), 38-57.
  • 29 Tokarska, M., & Orpel, M. (2019). Study of anisotropic electrical resistance of knitted fabrics. Textile Research Journal, 89(6), 1073-1083.
There are 29 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

İlkan Özkan 0000-0003-1006-895X

Publication Date June 28, 2020
Submission Date October 25, 2019
Acceptance Date June 12, 2020
Published in Issue Year 2020 Volume: 30 Issue: 2

Cite

APA Özkan, İ. (2020). INVESTIGATION ON THE ELECTROMAGNETIC SHIELDING PERFORMANCE OF COPPER PLATE AND COPPER COMPOSITE FABRICS: A COMPARATIVE STUDY. Textile and Apparel, 30(2), 156-162. https://doi.org/10.32710/tekstilvekonfeksiyon.638198

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.