Research Article
BibTex RIS Cite

Comparison of Poisson’s Ratio Measurement Methods: The Extensometer and the Universal Tensile Testing Devices

Year 2021, Volume: 31 Issue: 3, 203 - 213, 30.09.2021
https://doi.org/10.32710/tekstilvekonfeksiyon.895876

Abstract

Auxetic materials with a negative Poison’s ratio (PR) have the potential to meet the demand for different materials, especially technical textiles. In the literature, Universal Tensile Test (UTT) devices and various experimental setups developed by researchers have been used in PR measurements. This study aims to investigate the PR of knitted fabrics with UTT and extensometer devices comparatively by using the same measurement parameters according to ASTM E132. Knitted fabrics with zigzag and foldable patterns were produced in the study because of their auxetic behaviour. It has been determined that the extensometer device can be used as an alternative to the UTT device for PR measurements. While the PR of foldable fabrics cannot be measured with the UTT device because of the fabrics' folding on themselves, it has been observed that it can be easily measured with the extensometer device thanks to the horizontal axis principle.

Supporting Institution

The Scientific and Technological Research Council of Turkey(TUBITAK-1001)

Project Number

Project No: 219M170

Thanks

The authors would like to thank Uludağ Triko San. ve Tic. A.Ş., Bursa, Turkey for their support during knitting operations.

References

  • 1. Lim TC. 2015. Auxetic Materials and Structures. Springer. DOI: 10.1007/978-981-287-275-3.
  • 2. Chen S, Chawla KK, Chawla N. 2019. Handbook of Mechanics of Materials. Springer. DOI: 10.1007/978-981-10-6884-3.
  • 3. Jinyun Z, Yi L, Lam J, et al. 2010. The Poisson Ratio and Modulus of Elastic Knitted Fabrics. Textile Research Journal, 80: 1965–1969.
  • 4. Miller W, Hook PB, Smith CW, et al. 2009. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Composite Science and Technology, 69: 651–655.
  • 5. Alderson A, Evans KE. 1995. Microstructural modelling of auxetic microporous polymers. Journal of Materials Science, 30: 3319–3332.
  • 6. Scarpa F, Patorino P, Garelli A, et al. 2005. Auxetic compliant flexible PU foams: static and dynamic properties. Basic Solid State Physics, 242: 681–694.
  • 7. Uzun M. 2010. Negatif poi̇sson oranına sahi̇p (Auxetic) malzemeler ve uygulama alanları. Tekstil ve Mühendis, 17: 13–18.
  • 8. Alderson K, Alderson A, Anand S, et al. 2012. Auxetic warp knit textile structures. Basic Solid State Physics, 249: 1322–1329.
  • 9. Hook P. 2011. Uses of Auxetic Fibres. Patent No: US 8.002.879 B2 United States Pat Appl Publ. DOI: 10.1016/S0141.
  • 10. Ng WS, Hu H. 2017. Tensile and Deformation Behavior of Auxetic Plied Yarns. Basic Solid State Physics, 254: 1–11.
  • 11. Shen Y, Adanur S. 2019. Mechanical analysis of the auxetic behavior of novel braided tubular structures by the finite element method. Textile Research Journal, 89: 5187–5197.
  • 12. Jiang N, Hu H. 2019. Auxetic Yarn Made with Circular Braiding Technology. Basic Solid State Physics, 256: 1–12.
  • 13. Sibal A, Rawal A. 2015. Design strategy for auxetic dual helix yarn systems. Materials Letters, 161: 740–742.
  • 14. Sloan MR, Wright JR, Evans KE. 2011. The helical auxetic yarn - A novel structure for composites and textiles; Geometry, manufacture and mechanical properties. Mechanics of Materials, 43: 476–486.
  • 15. McAfee J, Faisal NH. 2017. Parametric sensitivity analysis to maximise auxetic effect of polymeric fibre based helical yarn. Composite Structures, 162: 1–12.
  • 16. Zeng J, Cao H, Hu H. 2018. Finite element simulation of an auxetic plied yarn structure. Textile Research Journal, 89: 3394–3400.
  • 17. Chen J, Du Z. 2020. Structural design and performance characterization of stable helical auxetic yarns based on the hollow-spindle covering system. Textile Research Journal, 90: 271–281.
  • 18. Lee W, Lee S, C. K, et al. 2011. Moisture Sensitive Auxetic Material. Patent No: US 2011/0039088, United States Pat Appl. DOI: 10.1037/t24245-000.
  • 19. Zhang GH, Ghita O, Evans KE. 2015. The fabrication and mechanical properties of a novel 3-component auxetic structure for composites. Composites Science and Technology, 117: 257–267.
  • 20. Ge Z, Hu H, Liu S. 2016. A novel plied yarn structure with negative Poisson’s ratio. The Journal of Textile Institute, 107: 578–588.
  • 21. Ali M, Zeeshan M, Ahmed S, et al. 2018. Development and Comfort Characterization of 2D-Woven Auxetic Fabric for Wearable and Medical Textile Applications. Clothing and Textile Research Journal, 36: 199–214.
  • 22. Cao H, Zulifqar A, Hua T, et al. 2018. Bi-stretch auxetic woven fabrics based on foldable geometry. Textile Research Journal, 004051751879864.
  • 23. Zulifqar A, Hu H. 2019. Geometrical analysis of bi-stretch auxetic woven fabric based on re-entrant hexagonal geometry. Textile Research Journal, 89: 4476–4490.
  • 24. Zulifqar A, Hua T, Hu H. 2019. Single- and Double-Layered Bistretch Auxetic Woven Fabrics Made of Nonauxetic Yarns Based on Foldable Geometries. Basic Solid State Physics, 1900156: 1–13.
  • 25. Kamrul H, Dong W, Zulifqar A, et al. 2020. Deformation behavior of auxetic woven fabric made of foldable geometry in different tensile directions. Textile Research Journal, DOI: 10.1177/0040517519869391.
  • 26. Chen Y, Zulifqar A, Hu H.2020. Auxeticity from the Folded Geometry: A Numerical Study. Basic Solid State Physics, 257: 1–9.
  • 27. Hu H, Wang Z, Liu S. 2011. Development of auxetic fabrics using flat knitting technology. Textile Research Journal, 81: 1493–1502.
  • 28. Glazzard M, Breedon P. 2014. Weft-knitted auxetic textile design. Basic Solid State Physics, 251: 267–272.
  • 29. Liu Y, Hu H, Lam JKC, et al. 2010. Negative Poisson’s Ratio Weft-knitted Fabrics. Textile Research Journal, 80: 856–863.
  • 30. Boakye A, Chang Y, Rafiu KR, et al. 2018. Design and manufacture of knitted tubular fabric with auxetic effect. The Journal of Textile Institute, 109: 596–602.
  • 31. Luan K, West A, DenHartog E, et al. 2020. Auxetic deformation of the weft-knitted Miura-ori fold. Textile Research Journal, 90: 617–630.
  • 32. Ugbolue SC, Yong K. Kim, Steven B. Warner, et al. 2011. Auxetic Fabric Structures and Related Fabrication Methods. Pub. No.: US 2011/0046715 A12011. United States Patent Application Publication
  • 33. Xu W, Sun Y, Lin H, et al.2020. Preparation of soft composite reinforced with auxetic warp-knitted spacer fabric for stab resistance. Textile Research Journal, 90: 323–332.
  • 34. Zhao S, Hu H, Kamrul H, et al. 2020. Development of auxetic warp knitted fabrics based on reentrant geometry. Textile Research Journal, 90: 344–356.
  • 35. Wang Z, Hu H. 2013. 3D auxetic warp-knitted spacer fabrics. Basic Solid State Physics, 251: 281–288.
  • 36. Wang Z, Hu H. 2017. Tensile and forming properties of auxetic warp-knitted spacer fabrics. Textile Research Journal, 87: 1925–1937.
  • 37. Blaga M, Ciobanu AR, Cuden AP, Rant D, 2013. Production of foldable weft knitted structures with auxetic potential on electronic flat knitting machines. Melliand International, 19(4):220-223
  • 38. Herakovich CT. 1984. Composite Laminates with Negative Through-the-Thickness Poisson’s Ratios. J Compos Mater, 18: 447–455.
  • 39. Evans KE, Donoghue JP, Alderson KL. 2004. The design, matching and manufacture of auxetic carbon fibre laminates. Journal of Composite Materials, 38: 95–106.
  • 40. Skertchly D. 2011. Composite auxetic armour, Pub. No.: US 2011/0214560 A1. 2011. United States Patent Application Publication. DOI: 10.1016/j.(73).
  • 41. Alderson KL, Simkins VR, Coenen VL, et al. 2005. How to make auxetic fibre reinforced composites. Basic Solid State Physics, 242: 509–518.
  • 42. Grimmelsmann N, Meissner H, Ehrmann A. 2016. 3D printed auxetic forms on knitted fabrics for adjustable permeability and mechanical properties. IOP Conference Series: Materials Science and Engineering, DOI: 10.1088/1757-899X/137/1/012011.
  • 43. Chang Y, Ma P. 2018. Fabrication and property of auxetic warp-knitted spacer structures with mesh. Textile Research Journal, 88: 2206–2213.
  • 44. Ezazshahabi N. 2020. A Review on the Poisson’s Ratio of Fabrics. Journal of Textiles and Polymers, 8: 53–63.
  • 45. Lolaki A, Shanbeh M. 2019. Variation of Poisson’s ratio of fabrics woven with helical composite auxetic weft yarns in relation to fabric structural parameters. Journal of Industrial Textiles, DOI: 10.1177/1528083718823290.
  • 46. Nazir MU, Shaker K, Hussain R, et al. 2019. Performance of novel auxetic woven fabrics produced using Helical Auxetic Yarn. Materials Research Express, DOI: 10.1088/2053-1591/ab1a7e.
  • 47. Chang Y, Ma P, Jiang G. 2017. Energy absorption property of warp-knitted spacer fabrics with negative Possion’s ratio under low velocity impact. Composite Structures, 182: 471–477.
  • 48. Xu W, Sun Y, Raji KR, et al. 2019. Design and fabrication of novel auxetic weft-knitted fabrics with Kevlar yarns. The Journal of Textile Institute, 110: 1257–1262.
  • 49. Steffens F, Rana S, Fangueiro R. 2016. Development of novel auxetic textile structures using high performance fibres. Materials and Design, 106: 81–89.
  • 50. Morton WE, Hearle JWS. 2008. Physical Properties of Textile Fibres. Woodhead Publishing.
  • 51. ASTM-E132. 2010. Standard Test Method for Poisson’s Ratio at Room Temperature, DOI: 10.1520/E0132-04R10.2.
Year 2021, Volume: 31 Issue: 3, 203 - 213, 30.09.2021
https://doi.org/10.32710/tekstilvekonfeksiyon.895876

Abstract

Project Number

Project No: 219M170

References

  • 1. Lim TC. 2015. Auxetic Materials and Structures. Springer. DOI: 10.1007/978-981-287-275-3.
  • 2. Chen S, Chawla KK, Chawla N. 2019. Handbook of Mechanics of Materials. Springer. DOI: 10.1007/978-981-10-6884-3.
  • 3. Jinyun Z, Yi L, Lam J, et al. 2010. The Poisson Ratio and Modulus of Elastic Knitted Fabrics. Textile Research Journal, 80: 1965–1969.
  • 4. Miller W, Hook PB, Smith CW, et al. 2009. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Composite Science and Technology, 69: 651–655.
  • 5. Alderson A, Evans KE. 1995. Microstructural modelling of auxetic microporous polymers. Journal of Materials Science, 30: 3319–3332.
  • 6. Scarpa F, Patorino P, Garelli A, et al. 2005. Auxetic compliant flexible PU foams: static and dynamic properties. Basic Solid State Physics, 242: 681–694.
  • 7. Uzun M. 2010. Negatif poi̇sson oranına sahi̇p (Auxetic) malzemeler ve uygulama alanları. Tekstil ve Mühendis, 17: 13–18.
  • 8. Alderson K, Alderson A, Anand S, et al. 2012. Auxetic warp knit textile structures. Basic Solid State Physics, 249: 1322–1329.
  • 9. Hook P. 2011. Uses of Auxetic Fibres. Patent No: US 8.002.879 B2 United States Pat Appl Publ. DOI: 10.1016/S0141.
  • 10. Ng WS, Hu H. 2017. Tensile and Deformation Behavior of Auxetic Plied Yarns. Basic Solid State Physics, 254: 1–11.
  • 11. Shen Y, Adanur S. 2019. Mechanical analysis of the auxetic behavior of novel braided tubular structures by the finite element method. Textile Research Journal, 89: 5187–5197.
  • 12. Jiang N, Hu H. 2019. Auxetic Yarn Made with Circular Braiding Technology. Basic Solid State Physics, 256: 1–12.
  • 13. Sibal A, Rawal A. 2015. Design strategy for auxetic dual helix yarn systems. Materials Letters, 161: 740–742.
  • 14. Sloan MR, Wright JR, Evans KE. 2011. The helical auxetic yarn - A novel structure for composites and textiles; Geometry, manufacture and mechanical properties. Mechanics of Materials, 43: 476–486.
  • 15. McAfee J, Faisal NH. 2017. Parametric sensitivity analysis to maximise auxetic effect of polymeric fibre based helical yarn. Composite Structures, 162: 1–12.
  • 16. Zeng J, Cao H, Hu H. 2018. Finite element simulation of an auxetic plied yarn structure. Textile Research Journal, 89: 3394–3400.
  • 17. Chen J, Du Z. 2020. Structural design and performance characterization of stable helical auxetic yarns based on the hollow-spindle covering system. Textile Research Journal, 90: 271–281.
  • 18. Lee W, Lee S, C. K, et al. 2011. Moisture Sensitive Auxetic Material. Patent No: US 2011/0039088, United States Pat Appl. DOI: 10.1037/t24245-000.
  • 19. Zhang GH, Ghita O, Evans KE. 2015. The fabrication and mechanical properties of a novel 3-component auxetic structure for composites. Composites Science and Technology, 117: 257–267.
  • 20. Ge Z, Hu H, Liu S. 2016. A novel plied yarn structure with negative Poisson’s ratio. The Journal of Textile Institute, 107: 578–588.
  • 21. Ali M, Zeeshan M, Ahmed S, et al. 2018. Development and Comfort Characterization of 2D-Woven Auxetic Fabric for Wearable and Medical Textile Applications. Clothing and Textile Research Journal, 36: 199–214.
  • 22. Cao H, Zulifqar A, Hua T, et al. 2018. Bi-stretch auxetic woven fabrics based on foldable geometry. Textile Research Journal, 004051751879864.
  • 23. Zulifqar A, Hu H. 2019. Geometrical analysis of bi-stretch auxetic woven fabric based on re-entrant hexagonal geometry. Textile Research Journal, 89: 4476–4490.
  • 24. Zulifqar A, Hua T, Hu H. 2019. Single- and Double-Layered Bistretch Auxetic Woven Fabrics Made of Nonauxetic Yarns Based on Foldable Geometries. Basic Solid State Physics, 1900156: 1–13.
  • 25. Kamrul H, Dong W, Zulifqar A, et al. 2020. Deformation behavior of auxetic woven fabric made of foldable geometry in different tensile directions. Textile Research Journal, DOI: 10.1177/0040517519869391.
  • 26. Chen Y, Zulifqar A, Hu H.2020. Auxeticity from the Folded Geometry: A Numerical Study. Basic Solid State Physics, 257: 1–9.
  • 27. Hu H, Wang Z, Liu S. 2011. Development of auxetic fabrics using flat knitting technology. Textile Research Journal, 81: 1493–1502.
  • 28. Glazzard M, Breedon P. 2014. Weft-knitted auxetic textile design. Basic Solid State Physics, 251: 267–272.
  • 29. Liu Y, Hu H, Lam JKC, et al. 2010. Negative Poisson’s Ratio Weft-knitted Fabrics. Textile Research Journal, 80: 856–863.
  • 30. Boakye A, Chang Y, Rafiu KR, et al. 2018. Design and manufacture of knitted tubular fabric with auxetic effect. The Journal of Textile Institute, 109: 596–602.
  • 31. Luan K, West A, DenHartog E, et al. 2020. Auxetic deformation of the weft-knitted Miura-ori fold. Textile Research Journal, 90: 617–630.
  • 32. Ugbolue SC, Yong K. Kim, Steven B. Warner, et al. 2011. Auxetic Fabric Structures and Related Fabrication Methods. Pub. No.: US 2011/0046715 A12011. United States Patent Application Publication
  • 33. Xu W, Sun Y, Lin H, et al.2020. Preparation of soft composite reinforced with auxetic warp-knitted spacer fabric for stab resistance. Textile Research Journal, 90: 323–332.
  • 34. Zhao S, Hu H, Kamrul H, et al. 2020. Development of auxetic warp knitted fabrics based on reentrant geometry. Textile Research Journal, 90: 344–356.
  • 35. Wang Z, Hu H. 2013. 3D auxetic warp-knitted spacer fabrics. Basic Solid State Physics, 251: 281–288.
  • 36. Wang Z, Hu H. 2017. Tensile and forming properties of auxetic warp-knitted spacer fabrics. Textile Research Journal, 87: 1925–1937.
  • 37. Blaga M, Ciobanu AR, Cuden AP, Rant D, 2013. Production of foldable weft knitted structures with auxetic potential on electronic flat knitting machines. Melliand International, 19(4):220-223
  • 38. Herakovich CT. 1984. Composite Laminates with Negative Through-the-Thickness Poisson’s Ratios. J Compos Mater, 18: 447–455.
  • 39. Evans KE, Donoghue JP, Alderson KL. 2004. The design, matching and manufacture of auxetic carbon fibre laminates. Journal of Composite Materials, 38: 95–106.
  • 40. Skertchly D. 2011. Composite auxetic armour, Pub. No.: US 2011/0214560 A1. 2011. United States Patent Application Publication. DOI: 10.1016/j.(73).
  • 41. Alderson KL, Simkins VR, Coenen VL, et al. 2005. How to make auxetic fibre reinforced composites. Basic Solid State Physics, 242: 509–518.
  • 42. Grimmelsmann N, Meissner H, Ehrmann A. 2016. 3D printed auxetic forms on knitted fabrics for adjustable permeability and mechanical properties. IOP Conference Series: Materials Science and Engineering, DOI: 10.1088/1757-899X/137/1/012011.
  • 43. Chang Y, Ma P. 2018. Fabrication and property of auxetic warp-knitted spacer structures with mesh. Textile Research Journal, 88: 2206–2213.
  • 44. Ezazshahabi N. 2020. A Review on the Poisson’s Ratio of Fabrics. Journal of Textiles and Polymers, 8: 53–63.
  • 45. Lolaki A, Shanbeh M. 2019. Variation of Poisson’s ratio of fabrics woven with helical composite auxetic weft yarns in relation to fabric structural parameters. Journal of Industrial Textiles, DOI: 10.1177/1528083718823290.
  • 46. Nazir MU, Shaker K, Hussain R, et al. 2019. Performance of novel auxetic woven fabrics produced using Helical Auxetic Yarn. Materials Research Express, DOI: 10.1088/2053-1591/ab1a7e.
  • 47. Chang Y, Ma P, Jiang G. 2017. Energy absorption property of warp-knitted spacer fabrics with negative Possion’s ratio under low velocity impact. Composite Structures, 182: 471–477.
  • 48. Xu W, Sun Y, Raji KR, et al. 2019. Design and fabrication of novel auxetic weft-knitted fabrics with Kevlar yarns. The Journal of Textile Institute, 110: 1257–1262.
  • 49. Steffens F, Rana S, Fangueiro R. 2016. Development of novel auxetic textile structures using high performance fibres. Materials and Design, 106: 81–89.
  • 50. Morton WE, Hearle JWS. 2008. Physical Properties of Textile Fibres. Woodhead Publishing.
  • 51. ASTM-E132. 2010. Standard Test Method for Poisson’s Ratio at Room Temperature, DOI: 10.1520/E0132-04R10.2.
There are 51 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Mehmet Tiritoğlu 0000-0002-2316-0782

Serkan Tezel 0000-0003-4078-8210

Yasemin Kavuşturan 0000-0002-9919-564X

Project Number Project No: 219M170
Publication Date September 30, 2021
Submission Date March 12, 2021
Acceptance Date June 30, 2021
Published in Issue Year 2021 Volume: 31 Issue: 3

Cite

APA Tiritoğlu, M., Tezel, S., & Kavuşturan, Y. (2021). Comparison of Poisson’s Ratio Measurement Methods: The Extensometer and the Universal Tensile Testing Devices. Textile and Apparel, 31(3), 203-213. https://doi.org/10.32710/tekstilvekonfeksiyon.895876

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.