Research Article
BibTex RIS Cite
Year 2022, Volume: 32 Issue: 1, 24 - 36, 29.03.2022
https://doi.org/10.32710/tekstilvekonfeksiyon.924028

Abstract

Supporting Institution

Bursalı Tekstil

References

  • Abdallah, K. S., & Jang, J. (2019). Famıly Splıttıng Algorıthm For A Sıngle Machıne Total Tardıness Schedulıng Problem Wıth Job Famıly Setup Tımes. International Journal of Industrial Engineering, 26(4).
  • A. Allahverdi, “The third comprehensive survey on scheduling problems with setup times/costs,” European Journal of Operational Research, vol. 246, no. 2, pp. 345–378, 2015.
  • Allahverdi, A. and Soroush, H.M. (2008). The significance of reducing setup times/setup costs. European Journal of Operational Research, 187(3):978-984.
  • Altıntaş M., 2010. Patron Yapısının Bobin Boyamaya Etkisinin Araştırılması. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Denizli.
  • Crauwels, H. A. J., Potts, C. N., & Van Wassenhove, L. N. (1996). Local search heuristics for single-machine scheduling with batching to minimize the number of late jobs. European Journal of Operational Research, 90(2), 200-213.
  • Deliktas, D., Torkul, O., & Ustun, O. (2019). A flexible job shop cell scheduling with sequence‐dependent family setup times and intercellular transportation times using conic scalarization method. International Transactions in Operational Research, 26(6), 2410-2431.
  • Ebrahimi, M., Ghomi, S. F., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied Mathematical Modelling, 38(9-10), 2490-2504.
  • Feng, J., Shiji, S., & Cheng, W. (2009). Dominance property based tabu search for single machine scheduling problems with family setups. Journal of Systems Engineering and Electronics, 20(6), 1233-1238.
  • Gupta, J. N., & Chantaravarapan, S. (2008). Single machine group scheduling with family setups to minimize total tardiness. International Journal of Production Research, 46(6), 1707-1722.
  • Hariri, A. M. A., & Potts, C. N. (1997). Single machine scheduling with batch set-up times to minimize maximum lateness. Annals of Operations Research, 70, 75-92.
  • Jacobs, L. W., & Brusco, M. J. (1995). A local search heuristic for large set-covering problems. Naval Research Logistics Quarterly, 42(7), 1129–1140.
  • Jin, F., Gupta, J. N., Song, S., & Wu, C. (2010). Single machine scheduling with sequence-dependent family setups to minimize maximum lateness. Journal of the Operational Research Society, 61(7), 1181-1189.
  • Jin, F., Song, S., & Wu, C. (2009). A simulated annealing algorithm for single machine scheduling problems with family setups. Computers & Operations Research, 36(7), 2133-2138.
  • Kacem, I. (2006, October). Lower bounds for tardiness minimization on a single machine with family setup times. In The Proceedings of the Multiconference on" Computational Engineering in Systems Applications" (Vol. 1, pp. 1034-1039). IEEE. Karabatı, S., & Akkan, C. (2006). Minimizing sum of completion times on a single machine with sequence-dependent family setup times. Journal of the Operational Research Society, 57(3), 271-280.
  • Moore, J. M. (1968). An n job, one machine sequencing algorithm for minimizing the number of late jobs. Management science, 15(1), 102-109.
  • Omar, M. K., Suppiah, Y., Teo, S. C., & Bennell, J. A. (2008, December). Scheduling incompatible job families on a single machine: A two-level heuristic approach. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 317-320). IEEE.
  • Özdemir, A., O. (2009). Selülozik Tekstil Materyallerinde Renklendirme Veriminin Artırılması İçin Katyonikleştirme Şartlarının Araştırılması, Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü
  • Öztürk, E. (2014). Tekstil Sektöründe Entegre Kirlilik Önleme ve Kontrolü ve Temiz Üretim Uygulamaları, Isparta: Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Özkan, N. (2016). Bakanlığı, Ç. V. S. G., & Müdürlüğü, İ. Tekstil Ürünlerinin Boyama ve Bitim İşlemlerinde Kimyasallara Deri Ve Solunum Yoluyla Maruziyetin Değerlendirilmesi. İş Sağlığı ve Güvenliği Uzmanlık Tezi.
  • Pinheiro, J. C., & Arroyo, J. E. C. (2020). Effective IG heuristics for a single-machine scheduling problem with family setups and resource constraints. Annals of Mathematics and Artificial Intelligence, 88(1), 169-185.
  • Potts, C. N., & Van Wassenhove, L. N. (1992). Integrating scheduling with batching and lot-sizing: a review of algorithms and complexity. Journal of the Operational Research Society, 43(5), 395-406.
  • Schaller, J. E. (2014). Minimizing total tardiness for scheduling identical parallel machines with family setups. Computers & Industrial Engineering, 72, 274-281.
  • Schaller, J. (2007). Scheduling on a single machine with family setups to minimize total tardiness. International Journal of Production Economics, 105(2), 329-344.
  • Schaller, J. E., & Gupta, J. N. (2008). Single machine scheduling with family setups to minimize total earliness and tardiness. European Journal of Operational Research, 187(3), 1050-1068.
  • Schultz, S. R., Hodgson*, T. J., King, R. E., & Taner, M. R. (2004). Minimizing L max for the single machine scheduling problem with family set-ups. International journal of production research, 42(20), 4315-4330.
  • Schutten, J. M., Van de Velde, S. L., & Zijm, W. H. (1996). Single-machine scheduling with release dates, due dates and family setup times. Management Science, 42(8), 1165-1174.
  • Sels, V., & Vanhoucke, M. (2012). A hybrid genetic algorithm for the single machine maximum lateness problem with release times and family setups. Computers & Operations Research, 39(10), 2346-2358.
  • Suriyaarachchi, R. H., & Wirth, A. (2004). Earliness/tardiness scheduling with a common due date and family setups. Computers & Industrial Engineering, 47(2-3), 275-288.
  • Taner, M. R., Hodgson, T. J., King, R. E., & Schultz, S. R. (2007). Satisfying due-dates in the presence of sequence dependent family setups with a special comedown structure. Computers & Industrial Engineering, 52(1), 57-70.
  • Tekstil Ürünlerinin Bitirilmesi Kaynak Verimliliği Rehberi, Yayın No: e-7 Sanayide Kaynak Verimliliği Rehberi-1, Aralık 2018, ISBN: 978-605-4889-34-1
  • Tomruk, E. (2008). Boyamaya hazırlanan bobinlerin sarım yapısının incelenmesi (Master's thesis, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü).
  • Uzsoy, R., & Velásquez, J. D. (2008). Heuristics for minimizing maximum lateness on a single machine with family-dependent set-up times. Computers & operations research, 35(6), 2018-2033.
  • Jacob, V., & Arroyo, J. E. C. (2016). ILS Heuristics for the single-machine scheduling problem with sequence-dependent family setup times to minimize total tardiness. Journal of Applied Mathematics, 2016.
  • Yakartepe, Z. ve Yakartepe, M., (1995b) “Pamuklu Malzemenin Boyanması”, T.K.A.M. Tekstil Terbiye Teknolojisi, Cilt 5, Tekstil ve Konfeksiyon Araştırma Merkezi, İstanbul, 1554–1624s
  • Yuan, J. J., Liu, Z. H., Ng, C. T., & Cheng, T. E. (2006). Single machine batch scheduling problem with family setup times and release dates to minimize makespan. Journal of scheduling, 9(6), 499-513.
  • Wagner HM. 1959.An integer linear-programming model for machine scheduling. Naval Research Logistics Quarterly, 6(2): 131–140. ISSN 1931-9193.
  • Zhao, Z., Liu, S., Zhou, M., & Guo, X. Intelligent Scheduling for a Rolling Process in Steel Production Systems. In 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC) (pp. 1-6). IEEE.

A Novel Approach for Optimum Planning of Bobbin Boilers in Textile Industry

Year 2022, Volume: 32 Issue: 1, 24 - 36, 29.03.2022
https://doi.org/10.32710/tekstilvekonfeksiyon.924028

Abstract

As in all sectors, fierce competition across the world deeply affects the textile industry. With the addition of new players to the market day by day, the competition is getting more and more intense. In today's world, where the price is determined by the customer, not by the manufacturer, it is an inevitable necessity for companies to reduce their costs in order to survive by maintaining their profitability. This only depends on the efficient use of resources. In this article, a productivity study has been carried out for the bobbin (package) dyeing process, which is one of the important elements of the textile industry. In this study, which was carried out practically in Bursalı Tekstil LTD. ŞTİ, the problem of sequencing the batches waiting to be dyed in dye boilers is discussed. It is necessary to wash the boilers between batches of different colors that are dyed consecutively within certain constraints. In addition, the due dates of these yarn batches must be respected. With the solution methods presented, it is aimed to sequence the batches in a way that requires the least washing and minimizes the total tardiness. Developed integer linear model and iterative greedy based heuristics were first tested with randomly generated test problems. In addition, it has been tested with six months of actual data of the bobbin dyeing department of the relevant company. According to the manual sorting, 17% improvement has been achieved in terms of the number of boiler washes and 13% in terms of total tardiness.

References

  • Abdallah, K. S., & Jang, J. (2019). Famıly Splıttıng Algorıthm For A Sıngle Machıne Total Tardıness Schedulıng Problem Wıth Job Famıly Setup Tımes. International Journal of Industrial Engineering, 26(4).
  • A. Allahverdi, “The third comprehensive survey on scheduling problems with setup times/costs,” European Journal of Operational Research, vol. 246, no. 2, pp. 345–378, 2015.
  • Allahverdi, A. and Soroush, H.M. (2008). The significance of reducing setup times/setup costs. European Journal of Operational Research, 187(3):978-984.
  • Altıntaş M., 2010. Patron Yapısının Bobin Boyamaya Etkisinin Araştırılması. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Denizli.
  • Crauwels, H. A. J., Potts, C. N., & Van Wassenhove, L. N. (1996). Local search heuristics for single-machine scheduling with batching to minimize the number of late jobs. European Journal of Operational Research, 90(2), 200-213.
  • Deliktas, D., Torkul, O., & Ustun, O. (2019). A flexible job shop cell scheduling with sequence‐dependent family setup times and intercellular transportation times using conic scalarization method. International Transactions in Operational Research, 26(6), 2410-2431.
  • Ebrahimi, M., Ghomi, S. F., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied Mathematical Modelling, 38(9-10), 2490-2504.
  • Feng, J., Shiji, S., & Cheng, W. (2009). Dominance property based tabu search for single machine scheduling problems with family setups. Journal of Systems Engineering and Electronics, 20(6), 1233-1238.
  • Gupta, J. N., & Chantaravarapan, S. (2008). Single machine group scheduling with family setups to minimize total tardiness. International Journal of Production Research, 46(6), 1707-1722.
  • Hariri, A. M. A., & Potts, C. N. (1997). Single machine scheduling with batch set-up times to minimize maximum lateness. Annals of Operations Research, 70, 75-92.
  • Jacobs, L. W., & Brusco, M. J. (1995). A local search heuristic for large set-covering problems. Naval Research Logistics Quarterly, 42(7), 1129–1140.
  • Jin, F., Gupta, J. N., Song, S., & Wu, C. (2010). Single machine scheduling with sequence-dependent family setups to minimize maximum lateness. Journal of the Operational Research Society, 61(7), 1181-1189.
  • Jin, F., Song, S., & Wu, C. (2009). A simulated annealing algorithm for single machine scheduling problems with family setups. Computers & Operations Research, 36(7), 2133-2138.
  • Kacem, I. (2006, October). Lower bounds for tardiness minimization on a single machine with family setup times. In The Proceedings of the Multiconference on" Computational Engineering in Systems Applications" (Vol. 1, pp. 1034-1039). IEEE. Karabatı, S., & Akkan, C. (2006). Minimizing sum of completion times on a single machine with sequence-dependent family setup times. Journal of the Operational Research Society, 57(3), 271-280.
  • Moore, J. M. (1968). An n job, one machine sequencing algorithm for minimizing the number of late jobs. Management science, 15(1), 102-109.
  • Omar, M. K., Suppiah, Y., Teo, S. C., & Bennell, J. A. (2008, December). Scheduling incompatible job families on a single machine: A two-level heuristic approach. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 317-320). IEEE.
  • Özdemir, A., O. (2009). Selülozik Tekstil Materyallerinde Renklendirme Veriminin Artırılması İçin Katyonikleştirme Şartlarının Araştırılması, Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü
  • Öztürk, E. (2014). Tekstil Sektöründe Entegre Kirlilik Önleme ve Kontrolü ve Temiz Üretim Uygulamaları, Isparta: Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Özkan, N. (2016). Bakanlığı, Ç. V. S. G., & Müdürlüğü, İ. Tekstil Ürünlerinin Boyama ve Bitim İşlemlerinde Kimyasallara Deri Ve Solunum Yoluyla Maruziyetin Değerlendirilmesi. İş Sağlığı ve Güvenliği Uzmanlık Tezi.
  • Pinheiro, J. C., & Arroyo, J. E. C. (2020). Effective IG heuristics for a single-machine scheduling problem with family setups and resource constraints. Annals of Mathematics and Artificial Intelligence, 88(1), 169-185.
  • Potts, C. N., & Van Wassenhove, L. N. (1992). Integrating scheduling with batching and lot-sizing: a review of algorithms and complexity. Journal of the Operational Research Society, 43(5), 395-406.
  • Schaller, J. E. (2014). Minimizing total tardiness for scheduling identical parallel machines with family setups. Computers & Industrial Engineering, 72, 274-281.
  • Schaller, J. (2007). Scheduling on a single machine with family setups to minimize total tardiness. International Journal of Production Economics, 105(2), 329-344.
  • Schaller, J. E., & Gupta, J. N. (2008). Single machine scheduling with family setups to minimize total earliness and tardiness. European Journal of Operational Research, 187(3), 1050-1068.
  • Schultz, S. R., Hodgson*, T. J., King, R. E., & Taner, M. R. (2004). Minimizing L max for the single machine scheduling problem with family set-ups. International journal of production research, 42(20), 4315-4330.
  • Schutten, J. M., Van de Velde, S. L., & Zijm, W. H. (1996). Single-machine scheduling with release dates, due dates and family setup times. Management Science, 42(8), 1165-1174.
  • Sels, V., & Vanhoucke, M. (2012). A hybrid genetic algorithm for the single machine maximum lateness problem with release times and family setups. Computers & Operations Research, 39(10), 2346-2358.
  • Suriyaarachchi, R. H., & Wirth, A. (2004). Earliness/tardiness scheduling with a common due date and family setups. Computers & Industrial Engineering, 47(2-3), 275-288.
  • Taner, M. R., Hodgson, T. J., King, R. E., & Schultz, S. R. (2007). Satisfying due-dates in the presence of sequence dependent family setups with a special comedown structure. Computers & Industrial Engineering, 52(1), 57-70.
  • Tekstil Ürünlerinin Bitirilmesi Kaynak Verimliliği Rehberi, Yayın No: e-7 Sanayide Kaynak Verimliliği Rehberi-1, Aralık 2018, ISBN: 978-605-4889-34-1
  • Tomruk, E. (2008). Boyamaya hazırlanan bobinlerin sarım yapısının incelenmesi (Master's thesis, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü).
  • Uzsoy, R., & Velásquez, J. D. (2008). Heuristics for minimizing maximum lateness on a single machine with family-dependent set-up times. Computers & operations research, 35(6), 2018-2033.
  • Jacob, V., & Arroyo, J. E. C. (2016). ILS Heuristics for the single-machine scheduling problem with sequence-dependent family setup times to minimize total tardiness. Journal of Applied Mathematics, 2016.
  • Yakartepe, Z. ve Yakartepe, M., (1995b) “Pamuklu Malzemenin Boyanması”, T.K.A.M. Tekstil Terbiye Teknolojisi, Cilt 5, Tekstil ve Konfeksiyon Araştırma Merkezi, İstanbul, 1554–1624s
  • Yuan, J. J., Liu, Z. H., Ng, C. T., & Cheng, T. E. (2006). Single machine batch scheduling problem with family setup times and release dates to minimize makespan. Journal of scheduling, 9(6), 499-513.
  • Wagner HM. 1959.An integer linear-programming model for machine scheduling. Naval Research Logistics Quarterly, 6(2): 131–140. ISSN 1931-9193.
  • Zhao, Z., Liu, S., Zhou, M., & Guo, X. Intelligent Scheduling for a Rolling Process in Steel Production Systems. In 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC) (pp. 1-6). IEEE.
There are 37 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Yunus Demir 0000-0003-3868-1860

Kemal İnan This is me

Early Pub Date March 29, 2022
Publication Date March 29, 2022
Submission Date April 27, 2021
Acceptance Date October 11, 2021
Published in Issue Year 2022 Volume: 32 Issue: 1

Cite

APA Demir, Y., & İnan, K. (2022). A Novel Approach for Optimum Planning of Bobbin Boilers in Textile Industry. Textile and Apparel, 32(1), 24-36. https://doi.org/10.32710/tekstilvekonfeksiyon.924028

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.