Flame Retardant and Antibacterial Coating on Cotton Fabric by Layer-by-Layer Assembly With Huntite-Hydromagnesite, Ammonium Polyphosphate, Chitosan and Aptes
Year 2022,
Volume: 32 Issue: 2, 115 - 125, 30.06.2022
Nurhan Onar Çamlıbel
,
Emre Koç
Abstract
In this study, it was investigated the coating of cotton fabric with huntite-hydromagnesite (HH) or ammonium polyphosphate (APP) solutions as anionic layer and chitosan solutions and nanosols as cationic layer by layer-by-layer (LBL) assembly to gain flame retardancy and antibacterial properties. Growth bilayer number, drying conditions and anionic layer type (HH or APP) affected the flame retardancy and antibacterial properties of coating with LBL assembly. 17% and 22% reduction in the peak heat release rate and 69% and 87% reduction in total smoke release and 26% and 14% reduction in mass loss rate were observed for fabric samples coated with AP solutions for 15 layers with drying after every dipping process (AP15DE) and fabric samples coated with HH solutions for 15 layers with drying after every dipping process,(H15DE) respectively. Thermogravimetric analysis revealed that the residual chars at 600 oC in air increased. The AP15DE exhibited the antibacterial activity against E. coli and S. aureus while H15DE displayed the antibacterial activity against only S. aureus.
Supporting Institution
Pamukkale University Scientific Research Project
Project Number
2019FEBE014
Thanks
The study was funded by Pamukkale University Scientific Research Project 2019FEBE014. The authors wish to thank Tecnosintesi SPA and Setas Company for supplying of ammonium polyphosphate and huntite-hydromagnesite powder, respectively. Authors greatly acknowledge ODTU for supporting the FTIR-ATR and DTA-TG analysis, ILTAM for supporting SEM-EDS analysis.
References
- References
1. Li S, Lin X, Liu Y, Li R, Ren X, Huang TS. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric. Cellulose. 2019;26(6):4213-4223.
- 2. Onar Camlibel N, Topcu H. Flame retardant cotton fabric modified with silica nanosols containing huntite–hydromagnesite grafted with GPTMS and VTES. J. Text. Inst.. 2020:1-15.
- 3. Atay HY, Engin B. Use of glass fibers and glass spheres to improve mechanical properties of huntite and hydromagnesite reinforced flame retardant composites. Rom. J. Mater.. 2019: 49(4), 468-474
- 4. Hollingbery LA, Hull TR. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim. Acta. 2010; 509(1-2): 1-11.
- 5. Kangal O, Kökkılıç O, Burat F. Production of huntite and hydromagnesite with flame retardant featured by flotation. Min. Metall. Explor. 2009; 26(2): 109-113.
- 6. Fang F, Zhang X, Meng Y, Gu Z, Bao C, Ding X, Li S, Chen X, Tian X. Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly. Surf. Coat. Technol. 2015; 262: 9-14.
- 7. Wang X, Romero MQ, Zhang XQ, Wang R, Wang DY. Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Adv. 2015; 5(14): 10647-10655.
- 8. Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater. 2002; 26(4‐5): 149-154.
- 9. Grancaric AM, Colleoni C, Guido E, Botteri L, Rosace G. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Prog. Org. Coat. 2017; 103: 174-181.
- 10. Spontón M, Ronda JC, Galià M, Cádiz V. Development of flame retardant phosphorus-and silicon-containing polybenzoxazines. Polym. Degrad. Stab. 2009; 94(2): 145-150.
- 11. Camlibel NO, Avinc O, Arik B, Yavas A. & Yakin I. The effects of huntite–hydromagnesite inclusion in acrylate-based polymer paste coating process on some textile functional performance properties of cotton fabric. Cellulose. 2019; 26(2): 1367-1381.
- 12. Alongi, J, Carosio F, Malucelli G. Influence of ammonium polyphosphate-/poly (acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polym. Degrad. Stab. 2012; 97(9): 1644-1653.
- 13. Carosio F, Alongi J, Malucelli G. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydr. Polym. 2012; 88(4): 1460-1469.
- 14. Mateos AJ, Cain AA, Grunlan JC. Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric. Ind. Eng. Chem. Res. 2014; 53(15): 6409-6416.
- 15. Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC. Microintumescent mechanism of flame‐retardant water‐based chitosan–ammonium polyphosphate multilayer nanocoating on cotton fabric. J. Appl. Polym. Sci.2018; 133(32).
- 16. Zhang T, Yan H, Peng M, Wang L, Ding H, Fang Z. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale. 2013; 5(7): 3013-3021.
- 17. Wattanatanom W, Churuchinda S, Potiyaraj P. Intumescent flame retardant finishing of polyester fabrics via the layer-by-layer assembly technique. Int. J. Clothing Sci. Technol. 2017; (29): 96–105.
- 18. Li H, Peng L. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr. Polym. 2015; 124: 35-42.
- 19. Shirvan AR, Nejad NH, Bashari A. Antibacterial finishing of cotton fabric via the chitosan/TPP self-assembled nano layers. Fibers Polym. 2014; 15(9), 1908-1914.
- 20. Joshi M, Khanna R, Shekhar R, Jha K. Chitosan nanocoating on cotton textile substrate using layer‐by‐layer self‐assembly technique. J. Appl. Polym. Sci. 2011; 119(5): 2793-2799.
- 21. Ali, S. W., Joshi, M., & Rajendran, S. Novel, Self-Assembled Antimicrobial Textile Coating Containing Chitosan Nanoparticles. Aatcc Rev. 2011; 11(5).
- 22. Gadkari RR, Ali SW, Joshi M, Rajendran S, Das A, Alagirusamy R. Leveraging antibacterial efficacy of silver loaded chitosan nanoparticles on layer-by-layer self-assembled coated cotton fabric. Int. J. Biol. Macromol. 2020; 162: 548-560.
- 23. Saini S, Gupta A, Singh N, Sheikh J. Functionalization of linen fabric using layer by layer treatment with chitosan and green tea extract. J. Ind. Eng. Chem. 2020; 82: 138-143.
- 24. Leistner M, Abu-Odeh AA, Rohmer SC, Grunlan JC. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric. Carbohydr. Polym. 2015; 130: 227-232.
- 25. Liu Y, Wang QQ, Jiang ZM, Zhang C. J., Li, Z. F., Chen, H. Q., & Zhu, P. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J. Anal. Appl. Pyrolysis . 2018; 135: 289-298.
- 26. Yu X, Pan Y, Wang D, Yuan B, Song, L, Hu Y. Fabrication and properties of biobased layer-by-layer coated ramie fabric-reinforced unsaturated polyester resin composites. Ind. Eng. Chem. Res. 2017; 56(16), 4758-4767.
- 27. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym. Degrad. Stab. 2011; 96(5): 745-750.
- 28. Laufer G, Carosio F, Martinez R, Camino G, Grunlan JC. Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies. J. Colloid Interface Sci. 2011; 356(1): 69-77.
- 29. Pan H, Song L, Ma L, Pan Y, Liew KM, Hu Y. Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose. 2014; 21(4): 2995-3006.
- 30. Pan H, Wang W, Pan Y, Song L. Hu Y, Liew KM. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohydr. Polym. 2015; 115: 516-524.
- 31. Pan Y, Wang W, Pan H, Zhan J, Hu Y. Fabrication of montmorillonite and titanate nanotube based coatings via layer-by-layer self-assembly method to enhance the thermal stability, flame retardancy and ultraviolet protection of olyethylene terephthalate (PET) fabric. RSC Adv. 2016; 6(59): 53625-53634.
- 32. Li Y, Wang B, Sui X, Xie R, Xu H, Zhang L, Zhong Y, Mao Z. Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Appl. Surf. Sci. 2018; 435: 1337-1343.
- 33. Li P, Wang B, Liu YY, Xu YJ, Jiang ZM, Dong CH, Zhang L, Liu Y, Zhu P. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydr. Polym. 2020; 237: 11617.
- 34. Nine MJ, Tran DN, ElMekawy A, Losic D. Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon. 2017;117: 252-262.
- 35. Safi K, Kant K, Bramhecha I, Mathur P, Sheikh J. Multifunctional modification of cotton using layer-by-layer finishing with chitosan, sodium lignin sulphonate and boric acid. Int. J. Biol. Macromol. 2020; 158: 903-910.
- 36. Fang F, Xiao D, Zhang X, Meng Y, Cheng C, Bao C, Ding X, Cao H, Tian X. Construction of intumescent flame retardant and antimicrobial coating on cotton fabric via layer-by-layer assembly technology. Surf. Coat. Technol. 2015; 276: 726-734.
- 37. Fang F, Chen X, Zhang X, Cheng C, Xiao D, Meng Y, Ding X, Zhang H, Tian X. Environmentally friendly assembly multilayer coating for flame retardant and antimicrobial cotton fabric. Prog. Org. Coat. 2016; 90: 258-266.
- 38. Alongi J, Cuttica F, Carosio F, & Bourbigot S. How much the fabric grammage may affect cotton combustion?. Cellulose, 22(5), 3477-3489.
- 39. Tata J, Alongi J, Carosio F, Frache A. Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I. Combustion behavior of polyester. Fire Mater. 2011; 35(6): 397-409.
- 40. Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. J. Appl. Polym. Sci. 2011; 119(4): 1961-1969.
- 41. Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007; 3(2): 203-208.
- 42. Kandare E, Kandola BK, Price D, Nazare S, Horrocks RA. Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS. Polym. Degrad. Stab. 2008; 93(11): 1996-2006.
- 43. Zhao P, Li X, Zhang M, Liu S, Liang W, Liu Y. Highly flame-retarding cotton fabrics with a novel phosphorus/nitrogen intumescent flame retardant. Korean J. Chem. Eng. 2014; 31(9): 1592-1597.
- 44. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem. Mater. 2001; 13(9): 2979-2990.
- 45. Horrocks AR. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polym. Degrad. Stab. 2011; 96(3): 377-392.
- 46. Wang L, Wen X, Zhang X, Yuan S, Xu Q, Fu F, Diao H, Liu X. Durable antimicrobial cotton fabric fabricated by carboxymethyl chitosan and quaternary ammonium salts. Cellulose, 2021; 1-13.
- 47. Lee TS, Kim SJ, Chang DS. Bacteriostatic effect of condensed phosphate on the growth of bacteria. Korean J. Fish. Aquat. Sci. 1988; 21(2): 97-104.
- 48. Liu J, Dong C, Wei D, Zhang Z, Xie W, Li Q, Lu Z. Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt. Fibers Polym. 2019; 20(7): 1368-1374.
- 49. Yamamoto O, Ohira T, Alvarez K, Fukuda M. Antibacterial characteristics of CaCO3–MgO composites. Mater. Sci. Eng., B. 2010; 173(1-3): 208-212.
- 50. Pérez OP. Synthesis, characterization, and assessment of the antimicrobial activity of MgO–calcium alginate porous beads. Revista Científica Tecnia. 2011; 26(2): 7
- 51. Cireli A, Onar N, Ebeoglugil MF, Kayatekin I, Kutlu B, Culha O, Celik E. Development of flame retardancy properties of new halogen‐free phosphorous doped SiO2 thin films on fabrics. J. Appl. Polym. Sci. 2017;105(6): 3748-3756.
- 52. Onar N, Mete G. Development of water repellent cotton fabric with application of ZnO, Al2O3, TiO2 and ZrO2 nanoparticles modified with ormosils. J. Text. Apparel. 2016; 26(3): 295-302.
- 53. Jiang C, Liu W, Sun Y, Liu C, Yang M, Wang Z. Fabrication of durable superhydrophobic and superoleophilic cotton fabric with fluorinated silica sol via sol–gel process. J. Appl. Polym. Sci. 2019; 136(4): 47005.
- 54. Mosnáčková K, Chehimi MM, Fedorko P, Omastová M. Polyamide grafted with polypyrrole: formation, properties, and stability. Chem. Pap.2013; 67(8): 979-994.
- 55. Škoc MS, Macan J, Pezelj E. Modification of polyurethane‐coated fabrics by sol–gel thin films. J. Appl. Polym. Sci. 2014; 131(4).
- 56. Sen F, Madakbas S, Kahraman MV. Preparation and characterization of polyaniline/Turkish Huntite‐hydromagnesite composites. Polym. Compos. 2014; 35(3): 456-460.
Year 2022,
Volume: 32 Issue: 2, 115 - 125, 30.06.2022
Nurhan Onar Çamlıbel
,
Emre Koç
Project Number
2019FEBE014
References
- References
1. Li S, Lin X, Liu Y, Li R, Ren X, Huang TS. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric. Cellulose. 2019;26(6):4213-4223.
- 2. Onar Camlibel N, Topcu H. Flame retardant cotton fabric modified with silica nanosols containing huntite–hydromagnesite grafted with GPTMS and VTES. J. Text. Inst.. 2020:1-15.
- 3. Atay HY, Engin B. Use of glass fibers and glass spheres to improve mechanical properties of huntite and hydromagnesite reinforced flame retardant composites. Rom. J. Mater.. 2019: 49(4), 468-474
- 4. Hollingbery LA, Hull TR. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim. Acta. 2010; 509(1-2): 1-11.
- 5. Kangal O, Kökkılıç O, Burat F. Production of huntite and hydromagnesite with flame retardant featured by flotation. Min. Metall. Explor. 2009; 26(2): 109-113.
- 6. Fang F, Zhang X, Meng Y, Gu Z, Bao C, Ding X, Li S, Chen X, Tian X. Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly. Surf. Coat. Technol. 2015; 262: 9-14.
- 7. Wang X, Romero MQ, Zhang XQ, Wang R, Wang DY. Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Adv. 2015; 5(14): 10647-10655.
- 8. Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater. 2002; 26(4‐5): 149-154.
- 9. Grancaric AM, Colleoni C, Guido E, Botteri L, Rosace G. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Prog. Org. Coat. 2017; 103: 174-181.
- 10. Spontón M, Ronda JC, Galià M, Cádiz V. Development of flame retardant phosphorus-and silicon-containing polybenzoxazines. Polym. Degrad. Stab. 2009; 94(2): 145-150.
- 11. Camlibel NO, Avinc O, Arik B, Yavas A. & Yakin I. The effects of huntite–hydromagnesite inclusion in acrylate-based polymer paste coating process on some textile functional performance properties of cotton fabric. Cellulose. 2019; 26(2): 1367-1381.
- 12. Alongi, J, Carosio F, Malucelli G. Influence of ammonium polyphosphate-/poly (acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polym. Degrad. Stab. 2012; 97(9): 1644-1653.
- 13. Carosio F, Alongi J, Malucelli G. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydr. Polym. 2012; 88(4): 1460-1469.
- 14. Mateos AJ, Cain AA, Grunlan JC. Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric. Ind. Eng. Chem. Res. 2014; 53(15): 6409-6416.
- 15. Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC. Microintumescent mechanism of flame‐retardant water‐based chitosan–ammonium polyphosphate multilayer nanocoating on cotton fabric. J. Appl. Polym. Sci.2018; 133(32).
- 16. Zhang T, Yan H, Peng M, Wang L, Ding H, Fang Z. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale. 2013; 5(7): 3013-3021.
- 17. Wattanatanom W, Churuchinda S, Potiyaraj P. Intumescent flame retardant finishing of polyester fabrics via the layer-by-layer assembly technique. Int. J. Clothing Sci. Technol. 2017; (29): 96–105.
- 18. Li H, Peng L. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr. Polym. 2015; 124: 35-42.
- 19. Shirvan AR, Nejad NH, Bashari A. Antibacterial finishing of cotton fabric via the chitosan/TPP self-assembled nano layers. Fibers Polym. 2014; 15(9), 1908-1914.
- 20. Joshi M, Khanna R, Shekhar R, Jha K. Chitosan nanocoating on cotton textile substrate using layer‐by‐layer self‐assembly technique. J. Appl. Polym. Sci. 2011; 119(5): 2793-2799.
- 21. Ali, S. W., Joshi, M., & Rajendran, S. Novel, Self-Assembled Antimicrobial Textile Coating Containing Chitosan Nanoparticles. Aatcc Rev. 2011; 11(5).
- 22. Gadkari RR, Ali SW, Joshi M, Rajendran S, Das A, Alagirusamy R. Leveraging antibacterial efficacy of silver loaded chitosan nanoparticles on layer-by-layer self-assembled coated cotton fabric. Int. J. Biol. Macromol. 2020; 162: 548-560.
- 23. Saini S, Gupta A, Singh N, Sheikh J. Functionalization of linen fabric using layer by layer treatment with chitosan and green tea extract. J. Ind. Eng. Chem. 2020; 82: 138-143.
- 24. Leistner M, Abu-Odeh AA, Rohmer SC, Grunlan JC. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric. Carbohydr. Polym. 2015; 130: 227-232.
- 25. Liu Y, Wang QQ, Jiang ZM, Zhang C. J., Li, Z. F., Chen, H. Q., & Zhu, P. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J. Anal. Appl. Pyrolysis . 2018; 135: 289-298.
- 26. Yu X, Pan Y, Wang D, Yuan B, Song, L, Hu Y. Fabrication and properties of biobased layer-by-layer coated ramie fabric-reinforced unsaturated polyester resin composites. Ind. Eng. Chem. Res. 2017; 56(16), 4758-4767.
- 27. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym. Degrad. Stab. 2011; 96(5): 745-750.
- 28. Laufer G, Carosio F, Martinez R, Camino G, Grunlan JC. Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies. J. Colloid Interface Sci. 2011; 356(1): 69-77.
- 29. Pan H, Song L, Ma L, Pan Y, Liew KM, Hu Y. Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose. 2014; 21(4): 2995-3006.
- 30. Pan H, Wang W, Pan Y, Song L. Hu Y, Liew KM. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohydr. Polym. 2015; 115: 516-524.
- 31. Pan Y, Wang W, Pan H, Zhan J, Hu Y. Fabrication of montmorillonite and titanate nanotube based coatings via layer-by-layer self-assembly method to enhance the thermal stability, flame retardancy and ultraviolet protection of olyethylene terephthalate (PET) fabric. RSC Adv. 2016; 6(59): 53625-53634.
- 32. Li Y, Wang B, Sui X, Xie R, Xu H, Zhang L, Zhong Y, Mao Z. Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Appl. Surf. Sci. 2018; 435: 1337-1343.
- 33. Li P, Wang B, Liu YY, Xu YJ, Jiang ZM, Dong CH, Zhang L, Liu Y, Zhu P. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydr. Polym. 2020; 237: 11617.
- 34. Nine MJ, Tran DN, ElMekawy A, Losic D. Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon. 2017;117: 252-262.
- 35. Safi K, Kant K, Bramhecha I, Mathur P, Sheikh J. Multifunctional modification of cotton using layer-by-layer finishing with chitosan, sodium lignin sulphonate and boric acid. Int. J. Biol. Macromol. 2020; 158: 903-910.
- 36. Fang F, Xiao D, Zhang X, Meng Y, Cheng C, Bao C, Ding X, Cao H, Tian X. Construction of intumescent flame retardant and antimicrobial coating on cotton fabric via layer-by-layer assembly technology. Surf. Coat. Technol. 2015; 276: 726-734.
- 37. Fang F, Chen X, Zhang X, Cheng C, Xiao D, Meng Y, Ding X, Zhang H, Tian X. Environmentally friendly assembly multilayer coating for flame retardant and antimicrobial cotton fabric. Prog. Org. Coat. 2016; 90: 258-266.
- 38. Alongi J, Cuttica F, Carosio F, & Bourbigot S. How much the fabric grammage may affect cotton combustion?. Cellulose, 22(5), 3477-3489.
- 39. Tata J, Alongi J, Carosio F, Frache A. Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I. Combustion behavior of polyester. Fire Mater. 2011; 35(6): 397-409.
- 40. Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. J. Appl. Polym. Sci. 2011; 119(4): 1961-1969.
- 41. Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007; 3(2): 203-208.
- 42. Kandare E, Kandola BK, Price D, Nazare S, Horrocks RA. Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS. Polym. Degrad. Stab. 2008; 93(11): 1996-2006.
- 43. Zhao P, Li X, Zhang M, Liu S, Liang W, Liu Y. Highly flame-retarding cotton fabrics with a novel phosphorus/nitrogen intumescent flame retardant. Korean J. Chem. Eng. 2014; 31(9): 1592-1597.
- 44. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem. Mater. 2001; 13(9): 2979-2990.
- 45. Horrocks AR. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polym. Degrad. Stab. 2011; 96(3): 377-392.
- 46. Wang L, Wen X, Zhang X, Yuan S, Xu Q, Fu F, Diao H, Liu X. Durable antimicrobial cotton fabric fabricated by carboxymethyl chitosan and quaternary ammonium salts. Cellulose, 2021; 1-13.
- 47. Lee TS, Kim SJ, Chang DS. Bacteriostatic effect of condensed phosphate on the growth of bacteria. Korean J. Fish. Aquat. Sci. 1988; 21(2): 97-104.
- 48. Liu J, Dong C, Wei D, Zhang Z, Xie W, Li Q, Lu Z. Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt. Fibers Polym. 2019; 20(7): 1368-1374.
- 49. Yamamoto O, Ohira T, Alvarez K, Fukuda M. Antibacterial characteristics of CaCO3–MgO composites. Mater. Sci. Eng., B. 2010; 173(1-3): 208-212.
- 50. Pérez OP. Synthesis, characterization, and assessment of the antimicrobial activity of MgO–calcium alginate porous beads. Revista Científica Tecnia. 2011; 26(2): 7
- 51. Cireli A, Onar N, Ebeoglugil MF, Kayatekin I, Kutlu B, Culha O, Celik E. Development of flame retardancy properties of new halogen‐free phosphorous doped SiO2 thin films on fabrics. J. Appl. Polym. Sci. 2017;105(6): 3748-3756.
- 52. Onar N, Mete G. Development of water repellent cotton fabric with application of ZnO, Al2O3, TiO2 and ZrO2 nanoparticles modified with ormosils. J. Text. Apparel. 2016; 26(3): 295-302.
- 53. Jiang C, Liu W, Sun Y, Liu C, Yang M, Wang Z. Fabrication of durable superhydrophobic and superoleophilic cotton fabric with fluorinated silica sol via sol–gel process. J. Appl. Polym. Sci. 2019; 136(4): 47005.
- 54. Mosnáčková K, Chehimi MM, Fedorko P, Omastová M. Polyamide grafted with polypyrrole: formation, properties, and stability. Chem. Pap.2013; 67(8): 979-994.
- 55. Škoc MS, Macan J, Pezelj E. Modification of polyurethane‐coated fabrics by sol–gel thin films. J. Appl. Polym. Sci. 2014; 131(4).
- 56. Sen F, Madakbas S, Kahraman MV. Preparation and characterization of polyaniline/Turkish Huntite‐hydromagnesite composites. Polym. Compos. 2014; 35(3): 456-460.