Research Article
BibTex RIS Cite

Biologically Degummed and Chemically Treated Okra Bast Fibers-Reinforced Poly(Vinyl Alcohol) Composites

Year 2022, Volume: 32 Issue: 4, 366 - 375, 31.12.2022
https://doi.org/10.32710/tekstilvekonfeksiyon.1083022

Abstract

This paper focuses on preparation of poly(vinyl alcohol) (PVA)-based composites reinforced with okra bast fibers at different percentages of 5, 10, 20% via solution casting method. Fibers obtained from different sections of okra plants were biologically degummed and scoured with Na2CO3. Selected fibers were bleached, treated with maleic anhydride or grafted with vinyl acetate. Mechanical, physical and biodegradational properties of the composites were investigated. The tensile strength of the produced composites ranges between 33.8 and 55.1 MPa, elasticity modulus from 1.8 to 2.6 GPa, elongation rate at break varies in 2.8-10%. Chemical treatments led to improved mechanical performance whereas increased fiber content reduces tensile strength, stiffness and elongation, as well as water absorption. Fiber addition significantly affected biodegradation in a complicated way: by decelerating mass loss but accelerating deterioration of mechanical properties.

Project Number

BİDEB 2221

References

  • N. Jain, V. K. Singh, and S. Chauhan, “A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films,” J. Mech. Behav. Mater., vol. 26, no. 5–6, pp. 213–222, 2017, doi: 10.1515/jmbm-2017-0027.
  • C. M. Hassan and N. A. Peppas, “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” Biopolym. · PVA Hydrogels, Anionic Polym. Nanocomposites, vol. 153, pp. 37–65, 2000, doi: 10.1007/3-540-46414-X_2.
  • F. Cengi̇z Çallioğlu, “The effect of glyoxal cross-linker and NaCl salt addition on the roller electrospinning of poly(vinyl) nanofibers,” Tekst. ve Konfeksiyon, vol. 24, no. 1, pp. 15–20, 2014.
  • L. Wang, G. Periyasami, A. Aldalbahi, and V. Fogliano, “The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour,” Food Chem., vol. 359, p. 129859, 2021, doi: https://doi.org/10.1016/j.foodchem.2021.129859.
  • S. Xu et al., “Properties of Polyvinyl Alcohol Films Composited With Hemicellulose and Nanocellulose Extracted From Artemisia selengensis Straw,” Front. Bioeng. Biotechnol., vol. 8, no. August, pp. 1–11, 2020, doi: 10.3389/fbioe.2020.00980.
  • G. M. A. Khan, N. D. Yilmaz, and K. Yilmaz, “Effects of Alkalization on Physical and Mechanical Properties of Biologically Degummed Okra Bast and Corn Husk Fibers,” J. Nat. Fibers, 2020, doi: 10.1080/15440478.2020.1798840.
  • S. Biswas, Q. Ahsan, A. Cenna, M. Hasan, and A. Hassan, “Physical and mechanical properties of jute, bamboo and coir natural fiber,” Fibers Polym., vol. 14, no. 10, pp. 1762–1767, 2013, doi: 10.1007/s12221-013-1762-3.
  • G. M. A. Khan, M. S. Alam Shams, M. R. Kabir, M. A. Gafur, M. Terano, and M. S. Alam, “Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites,” J. Appl. Polym. Sci., vol. 128, pp. 1020–1029, 2013, doi: 10.1002/app.38197.
  • G. M. A. Khan, N. D. Yilmaz, and K. Yilmaz, “Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers,” J. Text. Inst., vol. 111, no. 10, pp. 1418–1435, 2020, doi: 10.1080/00405000.2019.1702492.
  • L. Li, G. Sheng, and Q. Wang, “Parameters optimization for degumming of cotton-straw bast fiber,” Tekst. ve Konfeksiyon, vol. 25, no. 2, pp. 135–139, 2015.
  • M. S. Alam, G. M. A. Khan, and S. M. A. Razzaque, “Estimation of Main Constituents of Ananus comosus (Pineapple) Leaf Fiber and Its Photo-Oxidative Degradation,” J. Nat. Fibers, vol. 6, no. 2, pp. 138–150, 2009.
  • A. G. Temesgen, R. Eren, Y. Aykut, and F. Süvari, “Evaluation of Enset fabric reinforced green composite as sound absorber structure,” Tekst. ve Konfeksiyon, vol. 31, no. 2, pp. 73–81, Jun. 2021, doi: 10.32710/TEKSTILVEKONFEKSIYON.688371.
  • A. N. M. Masudur Rahman, S. Alimuzzaman, R. A. Khan, and J. Hossen, “Evaluating the performance of gamma irradiated okra fiber reinforced polypropylene (PP) composites: comparative study with jute/PP,” Fash. Text., vol. 5, no. 1, 2018, doi: 10.1186/s40691-018-0148-y.
  • R. Potluri, K. James Paul, S. Abdul Kalam, and P. Prasanthi, “Mechanical Properties Characterization of Okra Fiber Based Green Composites & Hybrid Laminates,” Mater. Today Proc., vol. 4, no. 2, pp. 2893–2902, 2017, doi: 10.1016/j.matpr.2017.02.170.
  • S. Rai, M. Hosssain, and F. Hossain, “Evaluation of okra [Abelmoscltus esculentus (Moench) L.] as bast fibre crop,” J. Crop Weed, vol. 8, no. 1, pp. 101–104, 2012.
  • G. M. A. Khan, M. Shaheruzzaman, M. H. Rahman, S. M. Abdur Razzaque, M. S. Islam, and M. S. Alam, “Surface modification of okra bast fiber and its physico-chemical characteristics,” Fibers Polym., vol. 10, no. 1, pp. 65–70, 2009, doi: 10.1007/s12221-009-0065-1.
  • A. K. Bledzki, S. Reihmane, and J. Gassan, “Properties and modification methods for vegetable fibers for natural fiber composites,” J. Appl. Polym. Sci., vol. 59, no. 8, pp. 1329–1336, 1996, doi: 10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0.
  • M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites,” Compos. Interfaces, vol. 15, no. 2–3, pp. 169–191, 2008, doi: 10.1163/156855408783810920.
  • A. El-Sabbagh, “Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour,” Compos. Part B Eng., vol. 57, pp. 126–135, 2014, doi: 10.1016/j.compositesb.2013.09.047.
  • I. H. M. Mondal and G. M. A. Khan, “Effect of acrylic monomers grafting onto jute constituents with potassium persulphate initiator catalysed by Fe ( II ),” Cellul. Chem. Technol., vol. 42, no. 1–3, pp. 9–16, 2008.
  • P. Cinelli, E. Chiellini, J. W. Lawton, and S. H. Imam, “Properties of Injection Molded Composites Containing Corn Fiber and Poly(Vinyl Alcohol),” J. Polym. Res., vol. 13, pp. 107–113, 2006, doi: 10.1007/s10965-005-9012-z.
  • S. H. Imam, P. Cinelli, S. H. Gordon, and E. Chiellini, “Characterization of Biodegradable Composite Films Prepared from Blends of Poly(Vinyl Alcohol), Cornstarch, and Lignocellulosic Fiber,” J. Polym. Environ., vol. 13, no. 1, pp. 47–55, 2005, doi: 10.1007/s10924-004-1215-6.
  • K. S. Ching, M. Ealid, Y. C. Ching, M. Haniff, M. Khalid, and M. T. H. Beg, “Preparation and characterisation of polyvinyl alcohol/oil palm empty fruit bunch fibre composite,” https://doi.org/10.1179/1432891714Z.0000000001008, vol. 18, pp. S6-364-S6-367, Dec. 2014, doi: 10.1179/1432891714Z.0000000001008.
  • M. Ershad Ali, C. Kuan Yong, Y. Chee Ching, C. Hock Chuah, and N.-S. Liou, “Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film,” BioResources, vol. 10, no. 1, pp. 822–838, 2015.
  • Afroza Parvin, M. S. Alam, M. A. Gafur, and G. M. A. Khan, “Synthesis of p-phynelenediamine treated fibrillated cellulose fiber and its application in poly(vinyl alcohol) composites,” J. Nat. Fibers, vol. accepted, 2022.
  • “Polyvinyl alcohol | CH2CHOH - PubChem.” https://pubchem.ncbi.nlm.nih.gov/compound/Polyvinyl-alcohol#section=Density (accessed Feb. 11, 2022).
  • “Polyvinyl alcohol CAS 9002-89-5 | 114266.” https://www.merckmillipore.com/TR/tr/product/Polyvinyl-alcohol,MDA_CHEM-114266 (accessed Feb. 11, 2022).
  • “Polymer Density.” http://www.polymerdatabase.com/polymer physics/Polymer Density.html (accessed Feb. 11, 2022).
  • G. M. Arifuzzaman Khan, N. D. Yilmaz, and K. Yilmaz, “Okra bast fiber as potential reinforcement element of biocomposites: Can it be the flax of the future?,” in Handbook of Composites from Renewable Materials, vol. 1–8, Wiley Scrivener, 2017, pp. 379–405.
  • M. M. Rahman, S. Afrin, and P. Haque, “Characterization of crystalline cellulose of jute reinforced poly (vinyl alcohol) (PVA) biocomposite film for potential biomedical applications,” Prog. Biomater. 2014 31, vol. 3, no. 1, pp. 1–9, Apr. 2014, doi: 10.1007/S40204-014-0023-X.
  • R. Santi, A. Cigada, B. Del Curto, and S. Farè, “Modulable properties of PVA/cellulose fiber composites,” J. Appl. Biomater. Funct. Mater., vol. 17, no. 1, Jan. 2019, doi: 10.1177/2280800019831224.
  • B. K. Tan, Y. C. Ching, S. C. Poh, L. C. Abdullah, and S. N. Gan, “A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol) Based Composites: Application and Opportunity,” Polym. 2015, Vol. 7, Pages 2205-2222, vol. 7, no. 11, pp. 2205–2222, Nov. 2015, doi: 10.3390/POLYM7111509.
Year 2022, Volume: 32 Issue: 4, 366 - 375, 31.12.2022
https://doi.org/10.32710/tekstilvekonfeksiyon.1083022

Abstract

Supporting Institution

TÜBİTAK

Project Number

BİDEB 2221

References

  • N. Jain, V. K. Singh, and S. Chauhan, “A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films,” J. Mech. Behav. Mater., vol. 26, no. 5–6, pp. 213–222, 2017, doi: 10.1515/jmbm-2017-0027.
  • C. M. Hassan and N. A. Peppas, “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” Biopolym. · PVA Hydrogels, Anionic Polym. Nanocomposites, vol. 153, pp. 37–65, 2000, doi: 10.1007/3-540-46414-X_2.
  • F. Cengi̇z Çallioğlu, “The effect of glyoxal cross-linker and NaCl salt addition on the roller electrospinning of poly(vinyl) nanofibers,” Tekst. ve Konfeksiyon, vol. 24, no. 1, pp. 15–20, 2014.
  • L. Wang, G. Periyasami, A. Aldalbahi, and V. Fogliano, “The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour,” Food Chem., vol. 359, p. 129859, 2021, doi: https://doi.org/10.1016/j.foodchem.2021.129859.
  • S. Xu et al., “Properties of Polyvinyl Alcohol Films Composited With Hemicellulose and Nanocellulose Extracted From Artemisia selengensis Straw,” Front. Bioeng. Biotechnol., vol. 8, no. August, pp. 1–11, 2020, doi: 10.3389/fbioe.2020.00980.
  • G. M. A. Khan, N. D. Yilmaz, and K. Yilmaz, “Effects of Alkalization on Physical and Mechanical Properties of Biologically Degummed Okra Bast and Corn Husk Fibers,” J. Nat. Fibers, 2020, doi: 10.1080/15440478.2020.1798840.
  • S. Biswas, Q. Ahsan, A. Cenna, M. Hasan, and A. Hassan, “Physical and mechanical properties of jute, bamboo and coir natural fiber,” Fibers Polym., vol. 14, no. 10, pp. 1762–1767, 2013, doi: 10.1007/s12221-013-1762-3.
  • G. M. A. Khan, M. S. Alam Shams, M. R. Kabir, M. A. Gafur, M. Terano, and M. S. Alam, “Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites,” J. Appl. Polym. Sci., vol. 128, pp. 1020–1029, 2013, doi: 10.1002/app.38197.
  • G. M. A. Khan, N. D. Yilmaz, and K. Yilmaz, “Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers,” J. Text. Inst., vol. 111, no. 10, pp. 1418–1435, 2020, doi: 10.1080/00405000.2019.1702492.
  • L. Li, G. Sheng, and Q. Wang, “Parameters optimization for degumming of cotton-straw bast fiber,” Tekst. ve Konfeksiyon, vol. 25, no. 2, pp. 135–139, 2015.
  • M. S. Alam, G. M. A. Khan, and S. M. A. Razzaque, “Estimation of Main Constituents of Ananus comosus (Pineapple) Leaf Fiber and Its Photo-Oxidative Degradation,” J. Nat. Fibers, vol. 6, no. 2, pp. 138–150, 2009.
  • A. G. Temesgen, R. Eren, Y. Aykut, and F. Süvari, “Evaluation of Enset fabric reinforced green composite as sound absorber structure,” Tekst. ve Konfeksiyon, vol. 31, no. 2, pp. 73–81, Jun. 2021, doi: 10.32710/TEKSTILVEKONFEKSIYON.688371.
  • A. N. M. Masudur Rahman, S. Alimuzzaman, R. A. Khan, and J. Hossen, “Evaluating the performance of gamma irradiated okra fiber reinforced polypropylene (PP) composites: comparative study with jute/PP,” Fash. Text., vol. 5, no. 1, 2018, doi: 10.1186/s40691-018-0148-y.
  • R. Potluri, K. James Paul, S. Abdul Kalam, and P. Prasanthi, “Mechanical Properties Characterization of Okra Fiber Based Green Composites & Hybrid Laminates,” Mater. Today Proc., vol. 4, no. 2, pp. 2893–2902, 2017, doi: 10.1016/j.matpr.2017.02.170.
  • S. Rai, M. Hosssain, and F. Hossain, “Evaluation of okra [Abelmoscltus esculentus (Moench) L.] as bast fibre crop,” J. Crop Weed, vol. 8, no. 1, pp. 101–104, 2012.
  • G. M. A. Khan, M. Shaheruzzaman, M. H. Rahman, S. M. Abdur Razzaque, M. S. Islam, and M. S. Alam, “Surface modification of okra bast fiber and its physico-chemical characteristics,” Fibers Polym., vol. 10, no. 1, pp. 65–70, 2009, doi: 10.1007/s12221-009-0065-1.
  • A. K. Bledzki, S. Reihmane, and J. Gassan, “Properties and modification methods for vegetable fibers for natural fiber composites,” J. Appl. Polym. Sci., vol. 59, no. 8, pp. 1329–1336, 1996, doi: 10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0.
  • M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites,” Compos. Interfaces, vol. 15, no. 2–3, pp. 169–191, 2008, doi: 10.1163/156855408783810920.
  • A. El-Sabbagh, “Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour,” Compos. Part B Eng., vol. 57, pp. 126–135, 2014, doi: 10.1016/j.compositesb.2013.09.047.
  • I. H. M. Mondal and G. M. A. Khan, “Effect of acrylic monomers grafting onto jute constituents with potassium persulphate initiator catalysed by Fe ( II ),” Cellul. Chem. Technol., vol. 42, no. 1–3, pp. 9–16, 2008.
  • P. Cinelli, E. Chiellini, J. W. Lawton, and S. H. Imam, “Properties of Injection Molded Composites Containing Corn Fiber and Poly(Vinyl Alcohol),” J. Polym. Res., vol. 13, pp. 107–113, 2006, doi: 10.1007/s10965-005-9012-z.
  • S. H. Imam, P. Cinelli, S. H. Gordon, and E. Chiellini, “Characterization of Biodegradable Composite Films Prepared from Blends of Poly(Vinyl Alcohol), Cornstarch, and Lignocellulosic Fiber,” J. Polym. Environ., vol. 13, no. 1, pp. 47–55, 2005, doi: 10.1007/s10924-004-1215-6.
  • K. S. Ching, M. Ealid, Y. C. Ching, M. Haniff, M. Khalid, and M. T. H. Beg, “Preparation and characterisation of polyvinyl alcohol/oil palm empty fruit bunch fibre composite,” https://doi.org/10.1179/1432891714Z.0000000001008, vol. 18, pp. S6-364-S6-367, Dec. 2014, doi: 10.1179/1432891714Z.0000000001008.
  • M. Ershad Ali, C. Kuan Yong, Y. Chee Ching, C. Hock Chuah, and N.-S. Liou, “Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film,” BioResources, vol. 10, no. 1, pp. 822–838, 2015.
  • Afroza Parvin, M. S. Alam, M. A. Gafur, and G. M. A. Khan, “Synthesis of p-phynelenediamine treated fibrillated cellulose fiber and its application in poly(vinyl alcohol) composites,” J. Nat. Fibers, vol. accepted, 2022.
  • “Polyvinyl alcohol | CH2CHOH - PubChem.” https://pubchem.ncbi.nlm.nih.gov/compound/Polyvinyl-alcohol#section=Density (accessed Feb. 11, 2022).
  • “Polyvinyl alcohol CAS 9002-89-5 | 114266.” https://www.merckmillipore.com/TR/tr/product/Polyvinyl-alcohol,MDA_CHEM-114266 (accessed Feb. 11, 2022).
  • “Polymer Density.” http://www.polymerdatabase.com/polymer physics/Polymer Density.html (accessed Feb. 11, 2022).
  • G. M. Arifuzzaman Khan, N. D. Yilmaz, and K. Yilmaz, “Okra bast fiber as potential reinforcement element of biocomposites: Can it be the flax of the future?,” in Handbook of Composites from Renewable Materials, vol. 1–8, Wiley Scrivener, 2017, pp. 379–405.
  • M. M. Rahman, S. Afrin, and P. Haque, “Characterization of crystalline cellulose of jute reinforced poly (vinyl alcohol) (PVA) biocomposite film for potential biomedical applications,” Prog. Biomater. 2014 31, vol. 3, no. 1, pp. 1–9, Apr. 2014, doi: 10.1007/S40204-014-0023-X.
  • R. Santi, A. Cigada, B. Del Curto, and S. Farè, “Modulable properties of PVA/cellulose fiber composites,” J. Appl. Biomater. Funct. Mater., vol. 17, no. 1, Jan. 2019, doi: 10.1177/2280800019831224.
  • B. K. Tan, Y. C. Ching, S. C. Poh, L. C. Abdullah, and S. N. Gan, “A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol) Based Composites: Application and Opportunity,” Polym. 2015, Vol. 7, Pages 2205-2222, vol. 7, no. 11, pp. 2205–2222, Nov. 2015, doi: 10.3390/POLYM7111509.
There are 32 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Gazi Md Arifuzzaman Khan This is me 0000-0002-4233-9868

Nazire Deniz Yilmaz 0000-0002-8605-774X

Project Number BİDEB 2221
Early Pub Date December 28, 2022
Publication Date December 31, 2022
Submission Date March 5, 2022
Acceptance Date May 31, 2022
Published in Issue Year 2022 Volume: 32 Issue: 4

Cite

APA Khan, G. M. A., & Yilmaz, N. D. (2022). Biologically Degummed and Chemically Treated Okra Bast Fibers-Reinforced Poly(Vinyl Alcohol) Composites. Textile and Apparel, 32(4), 366-375. https://doi.org/10.32710/tekstilvekonfeksiyon.1083022

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.