Research Article
BibTex RIS Cite
Year 2023, Volume: 33 Issue: 2, 197 - 204, 30.06.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1066814

Abstract

References

  • Deveci, S.S., Basal, G. 2009. Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan, Colloid Polymer Science, 287 (12), 1455 – 1467.
  • Basal, G., Deveci, S.S., Yalcin, D., Bayraktar, O. 2011. Properties of n-eicosane-loaded silk fibroin-chitosan microcapsules, Journal of Applied Polymer Science, 121(4), 1885 – 1889. https://doi.org/10.1002/app.33651
  • Nair, C.S., Bayraktar, O. 2021. Preparation and Characterization of Biopolymer Based Foam Material as Phase Change Material, V. International Ege Composite Materials Symposium, Oral Presentation, 4.11.2021, Antalya, Turkey.
  • Hossain, S., Afrin, S., Anika, S., Sultana, S., Haque, P., Shahruzzaman, M.D. 2022. Synthesis, characterization, and modification of natural polysaccharides. In Naeem, M., Aftab, T., Kham, M.M.A.K (Ed.), Radiation-Processed Polysaccharides. Elsevier, 29 – 74.
  • Croisier, F., Jérôme, C. 2013. Chitosan-based biomaterials for tissue engineering, European polymer journal, 49(4), 780-792. https://doi.org/10.1016/j.eurpolymj.2012.12.009
  • Bayraktar, O. 2018. Silk fibroin nanofibers loaded with hydroxytyrosol from hydrolysis of oleuropein in olive leaf extract, Textile & Leather Review, 1(3–4), 90 – 98. https://doi.org/10.31881/TLR.2018.vol1.iss3-4.p90-98.a9
  • Pekşen, B. B., Üzelakçil, C., Güneş, A., Malay, Ö., Bayraktar, O. 2006. A novel silk fibroin-supported iron catalyst for hydroxylation of phenol, Journal of Chemical Technology and Biotechnology, 81(7), 1218–1224. https://doi.org/10.1002/jctb.1519
  • Baspinar, Y., Üstündas, M., Bayraktar, O., Sezgin, C. 2018. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterization, Saudi Pharmaceutical Journal, 26(3), 323–334. https://doi.org/10.1016/j.jsps.2018.01.010
  • Uslu, M. E., Erdogan, I., Bayraktar, O. 2012. Incorporation of Equisetum arvense extract into silk fibroin–hyaluronic acid sponge matrices for wound dressing applications, New Biotechnology, 29, 117. https://doi.org/10.1016/j.nbt.2012.08.326
  • Luo, J., Zhao, L., Yang, Y., Song, G., Liu, Y., Chen, L., Tang, G. 2016. Emulsifying ability and cross-linking of silk fibroin microcapsules containing phase change materials. Solar Energy Materials and Solar Cells, 147, 144-149. https://doi.org/10.1016/j.solmat.2015.12.012
  • Sionkowska, A., Płanecka, A. 2013. Surface properties of thin films based on the mixtures of chitosan and silk fibroin. Journal of Molecular Liquids, 186, 157-162 https://doi.org/10.1016/j.molliq.2013.07.008 .
  • Ling, S., Qi, Z., Knight, D. P., Shao, Z., Chen, X. 2013. FTIR imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends. Polymer Chemistry, 4(21), 5401-5406. https://doi.org/10.1039/c3py00508a
  • Wi, S., Seo, J., Jeong, S. G., Chang, S. J., Kang, Y., Kim, S. 2015. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Solar Energy Materials and Solar Cells, 143, 168-173 https://doi.org/10.1016/j.solmat.2015.06.040.
  • Döğşçü, D. K. (2020). Long-chain diesters of fatty alcohols as novel phase change materials for thermal energy storage. Cumhuriyet Science Journal, 41(1), 269-280 https://doi.org/10.17776/csj.669208 .
  • Kahwaji, S., & White, M. A. (2019). Edible oils as practical phase change materials for thermal energy storage. Applied Sciences, 9(8), 1627 https://doi.org/10.3390/app9081627 .
  • Özkayalar, S., AKSOY, S. A. 2021. Production and Characterization of Nanoencapsulated Phase Change Materials (PCMs) and Bicomponent PCM Nanofibers. Textile and Apparel, 31(3), 156-170 https://doi.org/10.32710/tekstilvekonfeksiyon.761461 .
  • Mert, M. S., Sert, M., Mert, H. H. 2018. Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 161-174 . https://doi.org/10.21923/jesd.331998 .
  • Bhumkar, D. R., Pokharkar, V. B. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. Aaps Pharmscitech, 7(2), E138-E143 https://doi.org/10.1208/pt070250 .
  • Pawlak, A., Mucha, M. 2003. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica acta, 396(1-2), 153-166 https://doi.org/10.1016/S0040-6031(02)00523-3 .
  • Gierszewska-Drużyńska, M., Ostrowska-Czubenko, J. 2010. The effect of ionic crosslinking on thermal properties of hydrogel chitosan membranes. Progress on Chemistry and Application of Chitin and its Derivatives, 15, 25-32.
  • Umemura, K., Kawai, S. 2008. Preparation and characterization of Maillard reacted chitosan films with hemicellulose model compounds. Journal of Applied Polymer Science, 108(4), 2481-2487 https://doi.org/10.1002/app.27842 .
  • Hu, X., Kaplan, D., Cebe, P. 2006. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, 39(18), 6161-6170 https://doi.org/10.1021/ma0610109 .
  • Nogueira, G. M., Swiston, A. J., Beppu, M. M., Rubner, M. F. 2010. Layer-by-layer deposited chitosan/silk fibroin thin films with anisotropic nanofiber alignment. Langmuir, 26(11), 8953-8958 https://doi.org/10.1021/la904741h
  • Chen, X., Li, W., Zhong, W., Lu, Y., Yu, T. 1997. pH sensitivity and ion sensitivity of hydrogels based on complex‐forming chitosan/silk fibroin interpenetrating polymer network. Journal of Applied Polymer Science, 65(11), 2257-2262 https://doi.org/10.1002/(SICI)1097-4628(19970912)65:11<2257::AID-APP23>3.0.CO;2-Z.
  • Malay, Ö., Yalçın, D., Batıgün, A., Bayraktar, O. 2008. Characterization of silk fibroin/hyaluronic acid polyelectrolyte complex (PEC) films. Journal of Thermal Analysis and Calorimetry, 94(3), 749-755 https://doi.org/10.1007/s10973-008-9368-5 .
  • Srivastava, Y., Semwal, A. D., Sajeevkumar, V. A., Sharma, G. K. 2017. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Journal of food science and technology, 54(1), 45-54 https://doi.org/10.1007/s13197-016-2427-1 .

An exploratory Study on the Preparation of a Silk Fibroin-Chitosan Based Organic Solid-Liquid Transition Type Phase Change Materials (PCMs): Microcapsule and Foam Structures

Year 2023, Volume: 33 Issue: 2, 197 - 204, 30.06.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1066814

Abstract

Phase change materials (PCMs) can store and release latent heat by making phase transitions between solid-solid or liquid-solid phases at specific temperature ranges. In the preparation of silk fibroin (SF) and chitosan (CHI) based phase change microcapsules and foam structures, the usage of virgin coconut oil (VCO) as a phase change agent was investigated, both forms were successfully prepared and characterized. Scanning Electron Microscope (SEM) and optical microscope with heating block analyzes were performed on microcapsules. SEM, Fourier-transform infrared spectroscopy, and differential scanning calorimeter analyzes were performed on foams. SF and CHI-based microcapsules had homogeneous size distribution and were thermally stable up to 60°C. Characteristic properties of the foam structures changed with the amounts of SF and CHI, and phase change occur at around 25°C, the melting temperature of VCO, resulting in energy absorption of 0.5287 W/g. Microcapsule and foam PCMs obtained can be used in different medical and thermoregulated textile applications.

References

  • Deveci, S.S., Basal, G. 2009. Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan, Colloid Polymer Science, 287 (12), 1455 – 1467.
  • Basal, G., Deveci, S.S., Yalcin, D., Bayraktar, O. 2011. Properties of n-eicosane-loaded silk fibroin-chitosan microcapsules, Journal of Applied Polymer Science, 121(4), 1885 – 1889. https://doi.org/10.1002/app.33651
  • Nair, C.S., Bayraktar, O. 2021. Preparation and Characterization of Biopolymer Based Foam Material as Phase Change Material, V. International Ege Composite Materials Symposium, Oral Presentation, 4.11.2021, Antalya, Turkey.
  • Hossain, S., Afrin, S., Anika, S., Sultana, S., Haque, P., Shahruzzaman, M.D. 2022. Synthesis, characterization, and modification of natural polysaccharides. In Naeem, M., Aftab, T., Kham, M.M.A.K (Ed.), Radiation-Processed Polysaccharides. Elsevier, 29 – 74.
  • Croisier, F., Jérôme, C. 2013. Chitosan-based biomaterials for tissue engineering, European polymer journal, 49(4), 780-792. https://doi.org/10.1016/j.eurpolymj.2012.12.009
  • Bayraktar, O. 2018. Silk fibroin nanofibers loaded with hydroxytyrosol from hydrolysis of oleuropein in olive leaf extract, Textile & Leather Review, 1(3–4), 90 – 98. https://doi.org/10.31881/TLR.2018.vol1.iss3-4.p90-98.a9
  • Pekşen, B. B., Üzelakçil, C., Güneş, A., Malay, Ö., Bayraktar, O. 2006. A novel silk fibroin-supported iron catalyst for hydroxylation of phenol, Journal of Chemical Technology and Biotechnology, 81(7), 1218–1224. https://doi.org/10.1002/jctb.1519
  • Baspinar, Y., Üstündas, M., Bayraktar, O., Sezgin, C. 2018. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterization, Saudi Pharmaceutical Journal, 26(3), 323–334. https://doi.org/10.1016/j.jsps.2018.01.010
  • Uslu, M. E., Erdogan, I., Bayraktar, O. 2012. Incorporation of Equisetum arvense extract into silk fibroin–hyaluronic acid sponge matrices for wound dressing applications, New Biotechnology, 29, 117. https://doi.org/10.1016/j.nbt.2012.08.326
  • Luo, J., Zhao, L., Yang, Y., Song, G., Liu, Y., Chen, L., Tang, G. 2016. Emulsifying ability and cross-linking of silk fibroin microcapsules containing phase change materials. Solar Energy Materials and Solar Cells, 147, 144-149. https://doi.org/10.1016/j.solmat.2015.12.012
  • Sionkowska, A., Płanecka, A. 2013. Surface properties of thin films based on the mixtures of chitosan and silk fibroin. Journal of Molecular Liquids, 186, 157-162 https://doi.org/10.1016/j.molliq.2013.07.008 .
  • Ling, S., Qi, Z., Knight, D. P., Shao, Z., Chen, X. 2013. FTIR imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends. Polymer Chemistry, 4(21), 5401-5406. https://doi.org/10.1039/c3py00508a
  • Wi, S., Seo, J., Jeong, S. G., Chang, S. J., Kang, Y., Kim, S. 2015. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Solar Energy Materials and Solar Cells, 143, 168-173 https://doi.org/10.1016/j.solmat.2015.06.040.
  • Döğşçü, D. K. (2020). Long-chain diesters of fatty alcohols as novel phase change materials for thermal energy storage. Cumhuriyet Science Journal, 41(1), 269-280 https://doi.org/10.17776/csj.669208 .
  • Kahwaji, S., & White, M. A. (2019). Edible oils as practical phase change materials for thermal energy storage. Applied Sciences, 9(8), 1627 https://doi.org/10.3390/app9081627 .
  • Özkayalar, S., AKSOY, S. A. 2021. Production and Characterization of Nanoencapsulated Phase Change Materials (PCMs) and Bicomponent PCM Nanofibers. Textile and Apparel, 31(3), 156-170 https://doi.org/10.32710/tekstilvekonfeksiyon.761461 .
  • Mert, M. S., Sert, M., Mert, H. H. 2018. Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 161-174 . https://doi.org/10.21923/jesd.331998 .
  • Bhumkar, D. R., Pokharkar, V. B. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. Aaps Pharmscitech, 7(2), E138-E143 https://doi.org/10.1208/pt070250 .
  • Pawlak, A., Mucha, M. 2003. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica acta, 396(1-2), 153-166 https://doi.org/10.1016/S0040-6031(02)00523-3 .
  • Gierszewska-Drużyńska, M., Ostrowska-Czubenko, J. 2010. The effect of ionic crosslinking on thermal properties of hydrogel chitosan membranes. Progress on Chemistry and Application of Chitin and its Derivatives, 15, 25-32.
  • Umemura, K., Kawai, S. 2008. Preparation and characterization of Maillard reacted chitosan films with hemicellulose model compounds. Journal of Applied Polymer Science, 108(4), 2481-2487 https://doi.org/10.1002/app.27842 .
  • Hu, X., Kaplan, D., Cebe, P. 2006. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, 39(18), 6161-6170 https://doi.org/10.1021/ma0610109 .
  • Nogueira, G. M., Swiston, A. J., Beppu, M. M., Rubner, M. F. 2010. Layer-by-layer deposited chitosan/silk fibroin thin films with anisotropic nanofiber alignment. Langmuir, 26(11), 8953-8958 https://doi.org/10.1021/la904741h
  • Chen, X., Li, W., Zhong, W., Lu, Y., Yu, T. 1997. pH sensitivity and ion sensitivity of hydrogels based on complex‐forming chitosan/silk fibroin interpenetrating polymer network. Journal of Applied Polymer Science, 65(11), 2257-2262 https://doi.org/10.1002/(SICI)1097-4628(19970912)65:11<2257::AID-APP23>3.0.CO;2-Z.
  • Malay, Ö., Yalçın, D., Batıgün, A., Bayraktar, O. 2008. Characterization of silk fibroin/hyaluronic acid polyelectrolyte complex (PEC) films. Journal of Thermal Analysis and Calorimetry, 94(3), 749-755 https://doi.org/10.1007/s10973-008-9368-5 .
  • Srivastava, Y., Semwal, A. D., Sajeevkumar, V. A., Sharma, G. K. 2017. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Journal of food science and technology, 54(1), 45-54 https://doi.org/10.1007/s13197-016-2427-1 .
There are 26 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Zulal Gunay This is me 0000-0003-3893-9876

Ceren Nair 0000-0001-9063-6325

Oguz Bayraktar 0000-0003-4210-2825

Early Pub Date July 3, 2023
Publication Date June 30, 2023
Submission Date February 1, 2022
Acceptance Date October 13, 2022
Published in Issue Year 2023 Volume: 33 Issue: 2

Cite

APA Gunay, Z., Nair, C., & Bayraktar, O. (2023). An exploratory Study on the Preparation of a Silk Fibroin-Chitosan Based Organic Solid-Liquid Transition Type Phase Change Materials (PCMs): Microcapsule and Foam Structures. Textile and Apparel, 33(2), 197-204. https://doi.org/10.32710/tekstilvekonfeksiyon.1066814

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.