Research Article
BibTex RIS Cite
Year 2024, Volume: 34 Issue: 2, 162 - 174, 30.06.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1329788

Abstract

References

  • 1. Watson D, Fisher-Bogason R. 2017. Greener textiles in hospitals: Guide to green procurement in the healthcare sector. Copenhagen, Denmark.
  • 2. Overcrash M. 2012. A comparison of reusable and disposable perioperative textiles sustainability state-of-the-art 2012. Anesthesia & Analgesia, 14(5), 1055–1066.
  • 3. WHO. 2018. Health-care waste. World Health Organization, Geneva.
  • 4. Carre A. 2008. Life cycle assessment comparing laundered surgical gowns with polypropylene-based disposable gowns. RMIT University, Melbourne, Australia.
  • 5. Mikusinska M. 2012. Comparative life cycle assessment of surgical scrub suits: the case of reusable and disposable scrubs used in Swedish healthcare.
  • 6. Burguburu A, Tanné C, Bosc K, Laplaud J, Roth M, Czyrnek-Delêtre M. 2022. Comparative life cycle assessment of reusable and disposable scrub suits used in hospital operating rooms. Cleaner Environmental Systems, 4, 100068.
  • 7. McQuerry M, Easter E, Cao A. 2021. Disposable versus reusable medical gowns: A performance comparison. American Journal of Infection Control, 49(5), 563–570.
  • 8. Murphy F, Tchetchik A, Furxhi I. 2020. Reducing healthcare-associated infections (Hais) with antimicrobial inorganic nanoparticles incorporated in medical textiles: An economic assessment. Nanomaterials, 10(5), 999–1012.
  • 9. Overcash MR, Sehulster LM. 2022. The estimated incidence rate of healthcare-associated infections (HAIs) linked to laundered reusable healthcare textiles (HCTs) in the United States and the United Kingdom over a 50-year period: Do the data support the efficacy of approved laundry practices? Infection Control and Hospital Epidemiology, 43, 1510–1512.
  • 10. Woradit K, Sassananan S, Boonjun S, Boonpratatong A. 2020. Integrated RFID aperture and washing chamber shielding design for Real-Time cleaning performance monitoring in healthcare laundry system. In Proceedings of the 2019 International Conference on Biomedical and Health Informatics (IFMBE) (235–242). Lin K, Magjarevic R, de Carvalho P (eds). Taipei, Taiwan.
  • 11. UK Department of Health. 2016. Health technical memorandum 01-04: decontamination of linen for health and social care. Engineering, Equipment and Validation. London.
  • 12. Fijan S, Cencic A, Turk SŠ. 2006. Hygiene monitoring of textiles used in the food industry. Food Microbiology, 37(3), 356–361.
  • 13. Owen L, Laird K. 2020. The role of textiles as fomites in the healthcare environment: A review of the infection control risk. PeerJ, 8, e9790.
  • 14. Salayong K, Phaebua K, Lertwiriyaprapa T, Boonpoonga A, Chaiyasang L, Kumjinda A. 2019. Linen laundry management system in hospital by using UHF-RFID. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C) (1–4). Bangkok, Thailand.
  • 15. Ünal ZB, Dirgar E, Eda Acar, Kansoy O. 2017. A study on tracking of textile products used in hotel businesses. Journal of Tourism Theory and Research, 3(1), 9–15.
  • 16. Fisher JA, Monahan T. 2012. Evaluation of real-time location systems in their hospital contexts. International Journal of Medical Informatics, 81(10), 705–712.
  • 17. Bouet M, Pujolle G. 2010. RFID in eHealth systems: Applications, challenges, and perspectives. Annales des Telecommunications/ Annals of Telecommunications, 65(9–10), 497–503.
  • 18. Expert Market Research. 2021. Medical Textiles Market Size, Share, Growth, Trends, Forecast 2017-2027. Wyoming, USA.
  • 19. Grand View Research. 2021. Medical Textiles Market Size, Share & Trends Analysis Report By Product (Non-woven, Woven), By Application (Healthcare & Hygiene Products, Implantable Goods), By Region, And Segment Forecasts, 2021 - 2028. Dublin, Ireland.
  • 20. Moraru A, Helerea E, Ursachi C. 2018. RFID passive tags for harsh industrial environments. Bulletin of the Transilvania University of Brasov, Series I: Engineering Sciences, 11(1), 39–46.
  • 21. Dobkin D, Dobkin DM. 2007. The RF in RFID: Passive UHF RFID in Practice. Burlington, MA.
  • 22. Moraru A, Helerea E, Ursachi C, Cǎlin MD. 2017. RFID system with passive RFID tags for textiles. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (410–415). Bucharest, Romania.
  • 23. Moraru A, Helerea E, Ursachi C. 2018. Passive RFID tags for textile items-requirements and solutions. In Proceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering, ISFEE (1–6). Bucharest, Romania.
  • 24. López TS. 2011. RFID and sensor integration standards: State and future prospects. Computer Standards and Interfaces, 33(3), 207–213.
  • 25. Moraru A, Ursachi C, Helerea E. 2020. A new washable UHF RFID tag: Design, fabrication and assessment. Sensors, 20(12), 1–17.
  • 26. Toivonen M, Bjorninen T, Sydanheimo L, Ukkonen L, Rahmat-Samii Y. 2013. Impact of moisture and washing on the performance of embroidered UHF RFID tags. IEEE Antennas and Wireless Propagation Letters, 12, 1590–1593.
  • 27. Luo C, Gil I, Fernández-García R. 2022. Experimental comparison of three electro-textile interfaces for textile UHF-RFID tags on clothes. AEU - International Journal of Electronics and Communications, 146, 154137.
  • 28. Tariq N, Riaz MA, Shahid H, Khan MJ, Amin Y, Tenhunen H. 2022. A novel kite-shaped chipless RFID tag for low-profile applications. IETE Journal of Research, 68(3), 2149–2156.
  • 29. Corchia L, Monti G, De Benedetto E, et al. 2020. Fully-textile, wearable chipless tags for identification and tracking applications. Sensors, 20(2), 429–443.
  • 30. Khan MUA, Raad R, Foroughi J, Theoharis PI, Liu S, Masud J. 2020. A silver-coated conductive fibre HC12 sewed chipless RFID tag on cotton fabric for wearable applications. In Proceedings of the 2020 IEEE 23rd International Multi-Topic Conference, INMIC (1–5). Bahawalpur, Pakistan.
  • 31. Ali Khan MU, Raad R, Foroughi J. 2020. Transient response & electromagnetic behaviour of flexible bow-tie shaped chip-less RFID tag for general IoT applications. Advances in Science, Technology and Engineering Systems Journal, 5(5), 757–764.
  • 32. Andriamiharivolamena T, Vena A, Perret E, Lemaitre-Auger P, Tedjini S. 2014. Chipless identification applied to human body. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA) (241–245). Tampere, Finland.
  • 33. Vena A, Moradi E, Koski K, et al. 2013. Design and realization of stretchable sewn chipless RFID tags and sensors for wearable applications. In Proceedings of the 2013 IEEE International Conference on RFID (RFID) (176–183). Orlando, FL, USA.
  • 34. Mishra DP, Das TK, Behera SK. 2020. Design of a 3-bit chipless RFID tag using circular split-ring resonators for retail and healthcare applications. In Proceedings of the 2020 IEEE 26th National Conference on Communications (NCC) (10–13). Kharagpur, India.
  • 35. Mishra DP, Kumar Das T, Sethy P, Behera SK. 2019. Design of a multi-bit chipless RFID tag using square split-ring resonators. In Proceedings of the 2019 IEEE Indian Conference on Antennas and Propagation (InCAP) (1–4).
  • 36. Kiourti A, Volakis JL. 2014. Stretchable and flexible E-fiber wire antennas embedded in polymer. IEEE Antennas and Wireless Propagation Letters, 13, 1381–1384.
  • 37. Pei J, Fan J, Zheng R. 2021. Protecting wearable UHF RFID tags with electro-textile antennas: The challenge of machine washability. IEEE Antennas and Propagation Magazine, 63(4), 43–50.
  • 38. Mekki K, Necibi O, Dinis H, Mendes P, Gharsallah A. 2021. Frequency-spectra-based high coding capacity chipless RFID using an UWB-IR approach. Sensors, 21(7), 2525–2541.
  • 39. Iqbal MS, Shahid H, Riaz MA, Rauf S, Amin Y, Tenhunen H. 2017. FSS inspired polarization insensitive chipless RFID tag. IEICE Electronics Express, 14(10), 1–6.
  • 40. Islam MA, Yap Y, Karmakar N, Azad AKM. 2012. Orientation independent compact chipless RFID tag. In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications, RFID-TA 2012 (137–141). Nice, France.
  • 41. Babaeian F, Karmakar NC. 2020. Time and frequency domains analysis of chipless RFID back-scattered tag reflection. IoT, 1(1), 109–127.
  • 42. Khan MUA, Raad R, Foroughi J. 2020. A fibre embroidered chipless RFID tag on cotton fabrics for wearable applications. In Proceedings of the 2020 IEEE Global Communications Conference, GLOBECOM (1–6). Taipei, Taiwan.
  • 43. Corchia L, Monti G, Tarricone L. 2019. A frequency signature RFID chipless tag for wearable applications. Sensors, 19(3), 494–505.
  • 44. Tedjini S, Boularess O, Andriamiharivolamena T, Rmili H, Aguili T. 2017. A novel design of chipless RFID tags based on alphabets. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS) (1561–1563). Honololu, HI, USA.
  • 45. Betancourt D, Barahona M, Haase K, Schmidt G, Hubler A, Ellinger F. 2017. Design of printed chipless-RFID tags with QR-code appearance based on genetic algorithm. IEEE Transactions on Antennas and Propagation, 65(5), 2190–2195.
  • 46. Prabavathi P, Subha Rani S. 2021. Flower shaped frequency coded chipless RFID tag for low cost item tracking. Analog Integrated Circuits and Signal Processing, 109(1), 79–91.
  • 47. Sai DM, Mishra DP, Behera SK. 2021. Frequency shift coded chipless RFID tag design using square split ring resonators. In Proceedings of the 2021 IEEE 2nd International Conference on Range Technology (ICORT) (13–16). Chandipur, Balasore, India.
  • 48. Zou Z, Shao B, Zhou Q, et al. 2012. Design and demonstration of passive UWB RFIDs: Chipless versus chip solutions. In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA) (6–11). Nice, France.
  • 49. Jalil MEB, Rahim MKA, Mohamed H, et al. 2021. High capacity and miniaturized flexible chipless RFID tag using modified complementary split ring resonator. IEEE Access, 9, 33929–33943.
  • 50. Şamlı BE, Bahadır Ünal Z. 2018. Giysi üretiminde iletken kumaşların kullanımı. Mesleki Bilimler Dergisi (MBD), 7(3), 445–451.
  • 51. Abdulkawi WM, Sheta AFA. 2019. K-state resonators for high-coding-capacity chipless RFID applications. IEEE Access, 7, 185868–185878.
  • 52. Betancourt D, Haase K, Hübler A, Ellinger F. 2016. Bending and folding effect study of flexible fully printed and late-stage codified octagonal chipless RFID tags. IEEE Transactions on Antennas and Propagation, 64(7), 2815–2823.
  • 53. Prabavathi P, Rani SS. 2019. Design of frequency-signature based multiresonators using quarter wavelength open ended stub for chipless RFID tag. In Proceedings of the 2019 National Conference on Communications (NCC) (1–6).
  • 54. Jalil ME, Rahim MKA, Samsuri NA, Dewan R. 2014. Chipless RFID tag based on meandered line resonator. In Proceedings of the 2014 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) (203–206).
  • 55. Babaeian F, Karmakar NC. 2020. Compact multi-band chipless RFID resonators for identification and authentication applications. Electronics Letters, 56(14), 724–727.
  • 56. Janeczek K. 2017. Reliability analysis of UHF RFID tags under long-term mechanical cycling. Microelectronics Reliability, 75, 96–101.
  • 57. Virkki J, Björninen T, Kellomäki T, et al. 2014. Reliability of washable wearable screen printed UHF RFID tags. Microelectronics Reliability, 54(4), 840–846.
  • 58. Simorangkir RBVB, Le D, Bjorninen T, Sayem ASM, Zhadobov M, Sauleau R. 2019. Washing durability of PDMS-conductive fabric composite: realizing washable UHF RFID tags. IEEE Antennas and Wireless Propagation Letters, 18(12), 2572–2576.
  • 59. Guibert M, Massicart A, Chen X, et al. 2017. Washing reliability of painted, embroidered, and electro-textile wearable RFID tags. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (828–831).
  • 60. M. A. Islam, Y. Yap, N. C. Karmakar and AA. 2012. Compact printable orientation independent chipless RFID tag. Progress In Electromagnetics Research C, 33, 55–66.
  • 61. Nayci Duman M, Usta I, Esmer GB. 2022. Effects of stitch density, thread tension and using conductive yarn as upper or lower thread on reading performance of embroidered RFID tag antennas. Solid State Phenomena, 333, 55–62.
  • 62. Khan MUA, Raad R, Foroughi J, Tubbal F, Theoharis PI, Raheel MS. 2019. Effects of bending bow-tie chipless RFID tag for different polymer substrates. In Proceedings of the 2019 IEEE 13th International Conference on Signal Processing and Communication Systems (ICSPCS) (12–15).
  • 63. Borisov BF, Charnaya E V., Radzhabov AK. 1994. Acoustic studies of LiKSO4 crystals in the 290 to 930 K region. Physica Status Solidi (b), 181(2), 337–343.
  • 64. Zhang M, Yeo TS, Li LW, Gan YB. 2006. Parallel FFT based fast algorithms for solving large scale electromagnetic problems. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium (3995–3998).

In Silico Design and Analysis of E-Textiles for Hospital Laundry: Enhancing Tracking with Chipless RFID Tags

Year 2024, Volume: 34 Issue: 2, 162 - 174, 30.06.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1329788

Abstract

In the textile industry, passive radio frequency identification (RFID) tag integration is increasing from warehouse tracking to production follow-up and healthcare applications. For instance, laundry management in hospitals is a complicated and massive system that should work without errors for patient safety. The importance of the proposed work is majorly on introducing the in silico design of a 30x30 mm2 textile-based chipless RFID (CRFID) tag with circular transmission lines using a conductive yarn for item identification using the CST Microwave Studio application. The tag antenna is designed with stainless steel/polyester twisted yarn integrated into the polypropylene tag fabric using the embroidery technique. The antenna is tested for its readability of the embedded code in the simulations with a range of 0-20 GHz frequency band, and its Radar Cross Section (RCS) responses, return losses (S1,1), E-field, H-field, and Farfield performances are obtained. As a result of these, 9 bits code capacity and 1-bit/cm2 code density are achieved. The UHF antenna design simulation results demonstrate the feasibility of using textile-based materials to create a CRFID tag that is lightweight, durable, and cost-effective. The tag can store and transmit data without a chip, making it ideal for healthcare applications. This research contributes to the advancement of CRFID technology and provides a practical solution for laundry applications. The washable and durable circular textile-based CRFID tag helps to track and monitor laundry data consistently and can improve the healthcare laundry industry. Furthermore, it can be used in various textile applications for tracking, asset management, and wearable and washable textiles.

References

  • 1. Watson D, Fisher-Bogason R. 2017. Greener textiles in hospitals: Guide to green procurement in the healthcare sector. Copenhagen, Denmark.
  • 2. Overcrash M. 2012. A comparison of reusable and disposable perioperative textiles sustainability state-of-the-art 2012. Anesthesia & Analgesia, 14(5), 1055–1066.
  • 3. WHO. 2018. Health-care waste. World Health Organization, Geneva.
  • 4. Carre A. 2008. Life cycle assessment comparing laundered surgical gowns with polypropylene-based disposable gowns. RMIT University, Melbourne, Australia.
  • 5. Mikusinska M. 2012. Comparative life cycle assessment of surgical scrub suits: the case of reusable and disposable scrubs used in Swedish healthcare.
  • 6. Burguburu A, Tanné C, Bosc K, Laplaud J, Roth M, Czyrnek-Delêtre M. 2022. Comparative life cycle assessment of reusable and disposable scrub suits used in hospital operating rooms. Cleaner Environmental Systems, 4, 100068.
  • 7. McQuerry M, Easter E, Cao A. 2021. Disposable versus reusable medical gowns: A performance comparison. American Journal of Infection Control, 49(5), 563–570.
  • 8. Murphy F, Tchetchik A, Furxhi I. 2020. Reducing healthcare-associated infections (Hais) with antimicrobial inorganic nanoparticles incorporated in medical textiles: An economic assessment. Nanomaterials, 10(5), 999–1012.
  • 9. Overcash MR, Sehulster LM. 2022. The estimated incidence rate of healthcare-associated infections (HAIs) linked to laundered reusable healthcare textiles (HCTs) in the United States and the United Kingdom over a 50-year period: Do the data support the efficacy of approved laundry practices? Infection Control and Hospital Epidemiology, 43, 1510–1512.
  • 10. Woradit K, Sassananan S, Boonjun S, Boonpratatong A. 2020. Integrated RFID aperture and washing chamber shielding design for Real-Time cleaning performance monitoring in healthcare laundry system. In Proceedings of the 2019 International Conference on Biomedical and Health Informatics (IFMBE) (235–242). Lin K, Magjarevic R, de Carvalho P (eds). Taipei, Taiwan.
  • 11. UK Department of Health. 2016. Health technical memorandum 01-04: decontamination of linen for health and social care. Engineering, Equipment and Validation. London.
  • 12. Fijan S, Cencic A, Turk SŠ. 2006. Hygiene monitoring of textiles used in the food industry. Food Microbiology, 37(3), 356–361.
  • 13. Owen L, Laird K. 2020. The role of textiles as fomites in the healthcare environment: A review of the infection control risk. PeerJ, 8, e9790.
  • 14. Salayong K, Phaebua K, Lertwiriyaprapa T, Boonpoonga A, Chaiyasang L, Kumjinda A. 2019. Linen laundry management system in hospital by using UHF-RFID. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C) (1–4). Bangkok, Thailand.
  • 15. Ünal ZB, Dirgar E, Eda Acar, Kansoy O. 2017. A study on tracking of textile products used in hotel businesses. Journal of Tourism Theory and Research, 3(1), 9–15.
  • 16. Fisher JA, Monahan T. 2012. Evaluation of real-time location systems in their hospital contexts. International Journal of Medical Informatics, 81(10), 705–712.
  • 17. Bouet M, Pujolle G. 2010. RFID in eHealth systems: Applications, challenges, and perspectives. Annales des Telecommunications/ Annals of Telecommunications, 65(9–10), 497–503.
  • 18. Expert Market Research. 2021. Medical Textiles Market Size, Share, Growth, Trends, Forecast 2017-2027. Wyoming, USA.
  • 19. Grand View Research. 2021. Medical Textiles Market Size, Share & Trends Analysis Report By Product (Non-woven, Woven), By Application (Healthcare & Hygiene Products, Implantable Goods), By Region, And Segment Forecasts, 2021 - 2028. Dublin, Ireland.
  • 20. Moraru A, Helerea E, Ursachi C. 2018. RFID passive tags for harsh industrial environments. Bulletin of the Transilvania University of Brasov, Series I: Engineering Sciences, 11(1), 39–46.
  • 21. Dobkin D, Dobkin DM. 2007. The RF in RFID: Passive UHF RFID in Practice. Burlington, MA.
  • 22. Moraru A, Helerea E, Ursachi C, Cǎlin MD. 2017. RFID system with passive RFID tags for textiles. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (410–415). Bucharest, Romania.
  • 23. Moraru A, Helerea E, Ursachi C. 2018. Passive RFID tags for textile items-requirements and solutions. In Proceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering, ISFEE (1–6). Bucharest, Romania.
  • 24. López TS. 2011. RFID and sensor integration standards: State and future prospects. Computer Standards and Interfaces, 33(3), 207–213.
  • 25. Moraru A, Ursachi C, Helerea E. 2020. A new washable UHF RFID tag: Design, fabrication and assessment. Sensors, 20(12), 1–17.
  • 26. Toivonen M, Bjorninen T, Sydanheimo L, Ukkonen L, Rahmat-Samii Y. 2013. Impact of moisture and washing on the performance of embroidered UHF RFID tags. IEEE Antennas and Wireless Propagation Letters, 12, 1590–1593.
  • 27. Luo C, Gil I, Fernández-García R. 2022. Experimental comparison of three electro-textile interfaces for textile UHF-RFID tags on clothes. AEU - International Journal of Electronics and Communications, 146, 154137.
  • 28. Tariq N, Riaz MA, Shahid H, Khan MJ, Amin Y, Tenhunen H. 2022. A novel kite-shaped chipless RFID tag for low-profile applications. IETE Journal of Research, 68(3), 2149–2156.
  • 29. Corchia L, Monti G, De Benedetto E, et al. 2020. Fully-textile, wearable chipless tags for identification and tracking applications. Sensors, 20(2), 429–443.
  • 30. Khan MUA, Raad R, Foroughi J, Theoharis PI, Liu S, Masud J. 2020. A silver-coated conductive fibre HC12 sewed chipless RFID tag on cotton fabric for wearable applications. In Proceedings of the 2020 IEEE 23rd International Multi-Topic Conference, INMIC (1–5). Bahawalpur, Pakistan.
  • 31. Ali Khan MU, Raad R, Foroughi J. 2020. Transient response & electromagnetic behaviour of flexible bow-tie shaped chip-less RFID tag for general IoT applications. Advances in Science, Technology and Engineering Systems Journal, 5(5), 757–764.
  • 32. Andriamiharivolamena T, Vena A, Perret E, Lemaitre-Auger P, Tedjini S. 2014. Chipless identification applied to human body. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA) (241–245). Tampere, Finland.
  • 33. Vena A, Moradi E, Koski K, et al. 2013. Design and realization of stretchable sewn chipless RFID tags and sensors for wearable applications. In Proceedings of the 2013 IEEE International Conference on RFID (RFID) (176–183). Orlando, FL, USA.
  • 34. Mishra DP, Das TK, Behera SK. 2020. Design of a 3-bit chipless RFID tag using circular split-ring resonators for retail and healthcare applications. In Proceedings of the 2020 IEEE 26th National Conference on Communications (NCC) (10–13). Kharagpur, India.
  • 35. Mishra DP, Kumar Das T, Sethy P, Behera SK. 2019. Design of a multi-bit chipless RFID tag using square split-ring resonators. In Proceedings of the 2019 IEEE Indian Conference on Antennas and Propagation (InCAP) (1–4).
  • 36. Kiourti A, Volakis JL. 2014. Stretchable and flexible E-fiber wire antennas embedded in polymer. IEEE Antennas and Wireless Propagation Letters, 13, 1381–1384.
  • 37. Pei J, Fan J, Zheng R. 2021. Protecting wearable UHF RFID tags with electro-textile antennas: The challenge of machine washability. IEEE Antennas and Propagation Magazine, 63(4), 43–50.
  • 38. Mekki K, Necibi O, Dinis H, Mendes P, Gharsallah A. 2021. Frequency-spectra-based high coding capacity chipless RFID using an UWB-IR approach. Sensors, 21(7), 2525–2541.
  • 39. Iqbal MS, Shahid H, Riaz MA, Rauf S, Amin Y, Tenhunen H. 2017. FSS inspired polarization insensitive chipless RFID tag. IEICE Electronics Express, 14(10), 1–6.
  • 40. Islam MA, Yap Y, Karmakar N, Azad AKM. 2012. Orientation independent compact chipless RFID tag. In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications, RFID-TA 2012 (137–141). Nice, France.
  • 41. Babaeian F, Karmakar NC. 2020. Time and frequency domains analysis of chipless RFID back-scattered tag reflection. IoT, 1(1), 109–127.
  • 42. Khan MUA, Raad R, Foroughi J. 2020. A fibre embroidered chipless RFID tag on cotton fabrics for wearable applications. In Proceedings of the 2020 IEEE Global Communications Conference, GLOBECOM (1–6). Taipei, Taiwan.
  • 43. Corchia L, Monti G, Tarricone L. 2019. A frequency signature RFID chipless tag for wearable applications. Sensors, 19(3), 494–505.
  • 44. Tedjini S, Boularess O, Andriamiharivolamena T, Rmili H, Aguili T. 2017. A novel design of chipless RFID tags based on alphabets. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS) (1561–1563). Honololu, HI, USA.
  • 45. Betancourt D, Barahona M, Haase K, Schmidt G, Hubler A, Ellinger F. 2017. Design of printed chipless-RFID tags with QR-code appearance based on genetic algorithm. IEEE Transactions on Antennas and Propagation, 65(5), 2190–2195.
  • 46. Prabavathi P, Subha Rani S. 2021. Flower shaped frequency coded chipless RFID tag for low cost item tracking. Analog Integrated Circuits and Signal Processing, 109(1), 79–91.
  • 47. Sai DM, Mishra DP, Behera SK. 2021. Frequency shift coded chipless RFID tag design using square split ring resonators. In Proceedings of the 2021 IEEE 2nd International Conference on Range Technology (ICORT) (13–16). Chandipur, Balasore, India.
  • 48. Zou Z, Shao B, Zhou Q, et al. 2012. Design and demonstration of passive UWB RFIDs: Chipless versus chip solutions. In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA) (6–11). Nice, France.
  • 49. Jalil MEB, Rahim MKA, Mohamed H, et al. 2021. High capacity and miniaturized flexible chipless RFID tag using modified complementary split ring resonator. IEEE Access, 9, 33929–33943.
  • 50. Şamlı BE, Bahadır Ünal Z. 2018. Giysi üretiminde iletken kumaşların kullanımı. Mesleki Bilimler Dergisi (MBD), 7(3), 445–451.
  • 51. Abdulkawi WM, Sheta AFA. 2019. K-state resonators for high-coding-capacity chipless RFID applications. IEEE Access, 7, 185868–185878.
  • 52. Betancourt D, Haase K, Hübler A, Ellinger F. 2016. Bending and folding effect study of flexible fully printed and late-stage codified octagonal chipless RFID tags. IEEE Transactions on Antennas and Propagation, 64(7), 2815–2823.
  • 53. Prabavathi P, Rani SS. 2019. Design of frequency-signature based multiresonators using quarter wavelength open ended stub for chipless RFID tag. In Proceedings of the 2019 National Conference on Communications (NCC) (1–6).
  • 54. Jalil ME, Rahim MKA, Samsuri NA, Dewan R. 2014. Chipless RFID tag based on meandered line resonator. In Proceedings of the 2014 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) (203–206).
  • 55. Babaeian F, Karmakar NC. 2020. Compact multi-band chipless RFID resonators for identification and authentication applications. Electronics Letters, 56(14), 724–727.
  • 56. Janeczek K. 2017. Reliability analysis of UHF RFID tags under long-term mechanical cycling. Microelectronics Reliability, 75, 96–101.
  • 57. Virkki J, Björninen T, Kellomäki T, et al. 2014. Reliability of washable wearable screen printed UHF RFID tags. Microelectronics Reliability, 54(4), 840–846.
  • 58. Simorangkir RBVB, Le D, Bjorninen T, Sayem ASM, Zhadobov M, Sauleau R. 2019. Washing durability of PDMS-conductive fabric composite: realizing washable UHF RFID tags. IEEE Antennas and Wireless Propagation Letters, 18(12), 2572–2576.
  • 59. Guibert M, Massicart A, Chen X, et al. 2017. Washing reliability of painted, embroidered, and electro-textile wearable RFID tags. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (828–831).
  • 60. M. A. Islam, Y. Yap, N. C. Karmakar and AA. 2012. Compact printable orientation independent chipless RFID tag. Progress In Electromagnetics Research C, 33, 55–66.
  • 61. Nayci Duman M, Usta I, Esmer GB. 2022. Effects of stitch density, thread tension and using conductive yarn as upper or lower thread on reading performance of embroidered RFID tag antennas. Solid State Phenomena, 333, 55–62.
  • 62. Khan MUA, Raad R, Foroughi J, Tubbal F, Theoharis PI, Raheel MS. 2019. Effects of bending bow-tie chipless RFID tag for different polymer substrates. In Proceedings of the 2019 IEEE 13th International Conference on Signal Processing and Communication Systems (ICSPCS) (12–15).
  • 63. Borisov BF, Charnaya E V., Radzhabov AK. 1994. Acoustic studies of LiKSO4 crystals in the 290 to 930 K region. Physica Status Solidi (b), 181(2), 337–343.
  • 64. Zhang M, Yeo TS, Li LW, Gan YB. 2006. Parallel FFT based fast algorithms for solving large scale electromagnetic problems. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium (3995–3998).
There are 64 citations in total.

Details

Primary Language English
Subjects Wearable Materials, Textile Sciences and Engineering (Other)
Journal Section Articles
Authors

Müjgan Naycı Duman 0000-0002-6028-723X

İsmail Usta 0000-0002-0869-5439

Gökhan Bora Esmer 0000-0003-2405-0777

Early Pub Date July 1, 2024
Publication Date June 30, 2024
Submission Date July 20, 2023
Acceptance Date January 22, 2024
Published in Issue Year 2024 Volume: 34 Issue: 2

Cite

APA Naycı Duman, M., Usta, İ., & Esmer, G. B. (2024). In Silico Design and Analysis of E-Textiles for Hospital Laundry: Enhancing Tracking with Chipless RFID Tags. Textile and Apparel, 34(2), 162-174. https://doi.org/10.32710/tekstilvekonfeksiyon.1329788

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.