Research Article
BibTex RIS Cite
Year 2024, Volume: 34 Issue: 4, 394 - 408
https://doi.org/10.32710/tekstilvekonfeksiyon.1378464

Abstract

Project Number

TÜBİTAK 119M358

References

  • 1. Ezazshahabi N, Saharkhiz S, Varkiyani MHS. 2013. Effect of fabric structure and weft density on the Poisson’s ratio of worsted fabric. Journal of Engineered Fibers and Fabrics 8, 63–71.
  • 2. Darja R, Tatjana R, Alenka PC. 2013. Auxetic textiles. Acta Chimica Slovenica 60, 715–723.
  • 3. Yang W, Li ZM, Shi W, Xie BH, Yang MB. 2004. Review on auxetic materials. Journal of Materials Science 39, 3269–3279.
  • 4. Uzun M. 2010. Negative Poisson ratio (auxetic) materials and their applications. The Journal of Textiles and Engineers 17(77), 13-18.
  • 5. Carneiro VH, Meireles J, Puga H. 2013. Auxetic materials – A Review. Materials Science-Poland 31(4), 561-571.
  • 6. Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC. 1991. Molecular network design. Nature 353(6340), 124-125.
  • 7. Evans KE, Alderson KL. 2000. Auxetic materials: the positive side of being negative. Engineering Science and Education Journal 9(4), 148–154.
  • 8. Choi JB, Lakes RS. 1991. Design of a fastener based on negative Poisson's ratio foam. Cellular Polymers 10(3), 205-212.
  • 9. Grima JN, Farrugia PS, Gatt R, Attard D. 2008. On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Physica Status Solidi (b) 245(3), 521–529.
  • 10. Liu Y, Hu H. 2010. A review on auxetic structures and polymeric materials. Scientific Research and Essays 5(10), 1052–1063.
  • 11. Bhullar S. 2015. Three decades of auxetic polymers: a review. e-Polymers 15(4), 205–215.
  • 12. Alderson A. 1999. A triumph of lateral thought. Chemistry & Industry 17, 384–391.
  • 13. Grima JN, Evans KE. 2006. Auxetic behavior from rotating triangles. Journal of Materials Science 41, 3193–3196.
  • 14. Grima JN, Manicaro E, Attard D. 2010. Auxetic behaviour from connected different-sized squares and rectangles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467(2121), 439–458.
  • 15. Gaspar N, Ren XJ, Smith CW, Grima JN, Evans KE. 2005. Novel honeycombs with auxetic behavior. Acta Materialia 53(8), 2439–2445.
  • 16. Attard D, Grima JN. 2008. Auxetic behaviour from rotating rhombi. Physica Status Solidi B-basic Solid State Physics 245(11), 2395–2404.
  • 17. Evans KE, Alderson A. 2002. Molecular origin of auxetic behaviour in tetrahedral framework silicates. Physical Review Letters 89(22), 225503.
  • 18. Hu J, Xin B. 2008. Structure and mechanics of woven fabrics. Cambridge: Woodhead Publications Limited.
  • 19. Behera BK, Hari PK. 2010. Woven textile structure: theory and applications. Cambridg: Woodhead Publishing Limited.
  • 20. Shahabi NE, Saharkhiz S, Varkiyani SMH. 2013. Effect of fabric structure and weft density on the Poisson's ratio of worsted fabric. Journal of Engineered Fibers and Fabrics 8(2), 63–71.
  • 21. Sun H, Pan N, Postle R. 2005. On the Poisson's ratios of a woven fabric. Composite Structures 68(4), 505–510.
  • 22. Shahabi NE, Mousazadegan F, Varkiyani SMH, Saharkhiz S. 2014. Crimp analysis of worsted fabrics in the terms of fabric extension behaviour. Fibers and Polymers 15(6), 1211–1220.
  • 23. Ng WS, Hu H. 2018. Woven fabrics made of auxetic plied yarns. Polymers 10(2):226, 1-19.
  • 24. Shukla S, Behera BK, Mishra RK, Tichý M, Koláˇr V, Müller M. 2022. Modelling of auxetic woven structures for composite reinforcement. Textiles 2(1), 1–15.
  • 25. Zulifqar A, Hua T, Hu H. 2018. Development of uni-stretch woven fabrics with zero and negative Poisson’s ratio. Textile Research Journal 88(18), 2076-2092.
  • 26. Cao H, Zulifqar A, Hua T, Hu H. 2019. Bi-stretch auxetic woven fabrics based on foldable geometry. Textile Research Journal 89(13), 2694-2712.
  • 27. Akgun M, Suvari F, Eren R, Yurdakul T. 2021, 18-19 June. Auxetic performance analysis of a partial stretch woven fabric structure. 8. International Fiber and Polymer Research Symposium (pp.243-245). Eskişehir, Türkiye.
  • 28. Gao Y, Chen X. 2022. A study of woven fabrics made of helical auxetic yarns. Applied Composite Materials 29, 109–119.
  • 29. Zulifqar A, Hua T, Hu H. 2020. Single- and double-layered bistretch auxetic woven fabrics made of nonauxetic yarns based on foldable geometries. Phys. Status Solidi B 257: 1900156.
  • 30. Akgun M, Suvari F, Eren R, Yurdakul T. 2022. Investigation of auxetic performance and various physical properties of fabrics woven with braid yarns. Tekstil ve Konfeksiyon 32(3), 220-231.
  • 31. Akgun M, Suvari F, Eren R, Yurdakul T. 2022, 4-5 November. Investigation of Poisson's ratios and some properties of fabrics woven with elastane containing braid yarn using different weft yarn tensions. 11. International Fiber and Polymer Research Symposium (pp.62-70). Gebze, Türkiye
  • 32. Douglas WA. 1964. Braiding and braiding machinery. Eindhoven: Centrex Publishing Company.
  • 33. Ko FK, Pastore CM, Head AA. 1989. Handbook of industrial braiding, Covington, KY: Atkins & Pearce.
  • 34. Karaca Bayraktar, E. 1999. Investigation of effects of monofilament and braid structures of silk, polyamid 6, polyester, polypropylene sutures on some of the mechanical properties. PhD Thesis, Uludag University, Bursa.
  • 35. ISO 13934-1. 2013. Textiles – Tensile properties of fabrics – Part 1: Determination of maximum force and elongation at maximum force using the strip method.
  • 36. Suvari F, Akgun M, Eren R, Yurdakul T. 2021. Determination of deformation behavior of woven fabrics under stress using image processing method. Uludağ University Journal of the Faculty of Engineering 26(2), 661-678.

Investigation of Auxetic Performances of Single and Double Layer Fabrics Woven with Braid Weft Yarns of Different Structural Parameters

Year 2024, Volume: 34 Issue: 4, 394 - 408
https://doi.org/10.32710/tekstilvekonfeksiyon.1378464

Abstract

This study investigated the auxetic performances of single and double layer fabrics woven by using braid weft yarns with different structural parameters. Non-elastane braid weft yarns containing of yarn components with different filament numbers and braid weft yarns containing elastane and conventional warp yarns were used in fabrics. To investigate the effects of weave, fabrics with single and double layer structures were woven on an industrial weaving machine. Experimental results showed that the fabrics woven with both non-elastane and elastane braid weft yarns showed an auxetic performance by giving Negative Poisson's Ratio (NPR) values. It was observed that generally fabrics woven with braid weft yarns containing elastane could improve the auxetic performance. Fabric woven with non-elastane braid yarns of high filament numbers showed a higher NPR. When the effect of the weave on the auxetic performance was examined, a double layer fabric structure was seen to reduce the auxetic effect.

Ethical Statement

-

Supporting Institution

This research was supported by The Scientific and Technological Research Council of Türkiye (TÜBİTAK): Project No.119M358.

Project Number

TÜBİTAK 119M358

Thanks

The authors express sincere thanks to TÜBİTAK for their support. The authors would like to thank Butik Jakar (Bursa) for their contribution to the production of fabrics and Kord Endüstriyel İp ve İplik Sanayi ve Ticaret A.Ş for their contribution to the supply of braid yarns.

References

  • 1. Ezazshahabi N, Saharkhiz S, Varkiyani MHS. 2013. Effect of fabric structure and weft density on the Poisson’s ratio of worsted fabric. Journal of Engineered Fibers and Fabrics 8, 63–71.
  • 2. Darja R, Tatjana R, Alenka PC. 2013. Auxetic textiles. Acta Chimica Slovenica 60, 715–723.
  • 3. Yang W, Li ZM, Shi W, Xie BH, Yang MB. 2004. Review on auxetic materials. Journal of Materials Science 39, 3269–3279.
  • 4. Uzun M. 2010. Negative Poisson ratio (auxetic) materials and their applications. The Journal of Textiles and Engineers 17(77), 13-18.
  • 5. Carneiro VH, Meireles J, Puga H. 2013. Auxetic materials – A Review. Materials Science-Poland 31(4), 561-571.
  • 6. Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC. 1991. Molecular network design. Nature 353(6340), 124-125.
  • 7. Evans KE, Alderson KL. 2000. Auxetic materials: the positive side of being negative. Engineering Science and Education Journal 9(4), 148–154.
  • 8. Choi JB, Lakes RS. 1991. Design of a fastener based on negative Poisson's ratio foam. Cellular Polymers 10(3), 205-212.
  • 9. Grima JN, Farrugia PS, Gatt R, Attard D. 2008. On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Physica Status Solidi (b) 245(3), 521–529.
  • 10. Liu Y, Hu H. 2010. A review on auxetic structures and polymeric materials. Scientific Research and Essays 5(10), 1052–1063.
  • 11. Bhullar S. 2015. Three decades of auxetic polymers: a review. e-Polymers 15(4), 205–215.
  • 12. Alderson A. 1999. A triumph of lateral thought. Chemistry & Industry 17, 384–391.
  • 13. Grima JN, Evans KE. 2006. Auxetic behavior from rotating triangles. Journal of Materials Science 41, 3193–3196.
  • 14. Grima JN, Manicaro E, Attard D. 2010. Auxetic behaviour from connected different-sized squares and rectangles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467(2121), 439–458.
  • 15. Gaspar N, Ren XJ, Smith CW, Grima JN, Evans KE. 2005. Novel honeycombs with auxetic behavior. Acta Materialia 53(8), 2439–2445.
  • 16. Attard D, Grima JN. 2008. Auxetic behaviour from rotating rhombi. Physica Status Solidi B-basic Solid State Physics 245(11), 2395–2404.
  • 17. Evans KE, Alderson A. 2002. Molecular origin of auxetic behaviour in tetrahedral framework silicates. Physical Review Letters 89(22), 225503.
  • 18. Hu J, Xin B. 2008. Structure and mechanics of woven fabrics. Cambridge: Woodhead Publications Limited.
  • 19. Behera BK, Hari PK. 2010. Woven textile structure: theory and applications. Cambridg: Woodhead Publishing Limited.
  • 20. Shahabi NE, Saharkhiz S, Varkiyani SMH. 2013. Effect of fabric structure and weft density on the Poisson's ratio of worsted fabric. Journal of Engineered Fibers and Fabrics 8(2), 63–71.
  • 21. Sun H, Pan N, Postle R. 2005. On the Poisson's ratios of a woven fabric. Composite Structures 68(4), 505–510.
  • 22. Shahabi NE, Mousazadegan F, Varkiyani SMH, Saharkhiz S. 2014. Crimp analysis of worsted fabrics in the terms of fabric extension behaviour. Fibers and Polymers 15(6), 1211–1220.
  • 23. Ng WS, Hu H. 2018. Woven fabrics made of auxetic plied yarns. Polymers 10(2):226, 1-19.
  • 24. Shukla S, Behera BK, Mishra RK, Tichý M, Koláˇr V, Müller M. 2022. Modelling of auxetic woven structures for composite reinforcement. Textiles 2(1), 1–15.
  • 25. Zulifqar A, Hua T, Hu H. 2018. Development of uni-stretch woven fabrics with zero and negative Poisson’s ratio. Textile Research Journal 88(18), 2076-2092.
  • 26. Cao H, Zulifqar A, Hua T, Hu H. 2019. Bi-stretch auxetic woven fabrics based on foldable geometry. Textile Research Journal 89(13), 2694-2712.
  • 27. Akgun M, Suvari F, Eren R, Yurdakul T. 2021, 18-19 June. Auxetic performance analysis of a partial stretch woven fabric structure. 8. International Fiber and Polymer Research Symposium (pp.243-245). Eskişehir, Türkiye.
  • 28. Gao Y, Chen X. 2022. A study of woven fabrics made of helical auxetic yarns. Applied Composite Materials 29, 109–119.
  • 29. Zulifqar A, Hua T, Hu H. 2020. Single- and double-layered bistretch auxetic woven fabrics made of nonauxetic yarns based on foldable geometries. Phys. Status Solidi B 257: 1900156.
  • 30. Akgun M, Suvari F, Eren R, Yurdakul T. 2022. Investigation of auxetic performance and various physical properties of fabrics woven with braid yarns. Tekstil ve Konfeksiyon 32(3), 220-231.
  • 31. Akgun M, Suvari F, Eren R, Yurdakul T. 2022, 4-5 November. Investigation of Poisson's ratios and some properties of fabrics woven with elastane containing braid yarn using different weft yarn tensions. 11. International Fiber and Polymer Research Symposium (pp.62-70). Gebze, Türkiye
  • 32. Douglas WA. 1964. Braiding and braiding machinery. Eindhoven: Centrex Publishing Company.
  • 33. Ko FK, Pastore CM, Head AA. 1989. Handbook of industrial braiding, Covington, KY: Atkins & Pearce.
  • 34. Karaca Bayraktar, E. 1999. Investigation of effects of monofilament and braid structures of silk, polyamid 6, polyester, polypropylene sutures on some of the mechanical properties. PhD Thesis, Uludag University, Bursa.
  • 35. ISO 13934-1. 2013. Textiles – Tensile properties of fabrics – Part 1: Determination of maximum force and elongation at maximum force using the strip method.
  • 36. Suvari F, Akgun M, Eren R, Yurdakul T. 2021. Determination of deformation behavior of woven fabrics under stress using image processing method. Uludağ University Journal of the Faculty of Engineering 26(2), 661-678.
There are 36 citations in total.

Details

Primary Language English
Subjects Fabric Technologies, Textile Technology
Journal Section Articles
Authors

Mine Akgün 0000-0002-6415-7782

Fatih Süvari 0000-0001-5708-7993

Recep Eren 0000-0001-9389-0281

Tuğba Yurdakul 0000-0003-0369-3757

Project Number TÜBİTAK 119M358
Early Pub Date January 1, 2025
Publication Date
Submission Date October 19, 2023
Acceptance Date February 14, 2024
Published in Issue Year 2024 Volume: 34 Issue: 4

Cite

APA Akgün, M., Süvari, F., Eren, R., Yurdakul, T. (2025). Investigation of Auxetic Performances of Single and Double Layer Fabrics Woven with Braid Weft Yarns of Different Structural Parameters. Textile and Apparel, 34(4), 394-408. https://doi.org/10.32710/tekstilvekonfeksiyon.1378464

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.