Research Article
BibTex RIS Cite
Year 2024, Volume: 34 Issue: 4, 454 - 466
https://doi.org/10.32710/tekstilvekonfeksiyon.1397188

Abstract

References

  • 1. Wang H., Siddiqui M. Q., & Memon H. (2020). Processing Physical Structure, properties and quality of cotton. Wang, H, Memon, H. Cotton science and processing technology: Gene, ginning, garment and green recycling. Springer 79–97.
  • 2. Gordon S., Rodgers J., & Abidi N. (2017). Cotton fibre cross-section properties. Cotton fibres, characteristics, uses and performance, Nova 65–86.
  • 3. Pereira L., Bastos C., Tzanov T., Cavaco-Paulo A., & Gübitz G. M. (2005). Environmentally friendly bleaching of cotton using laccases. Environmental Chemistry Letters 3, 66–69.
  • 4. Wang N., Tang P., Zhao C., Zhang Z., & Sun G. (2020). An environmentally friendly bleaching process for cotton fabrics: mechanism and application of UV/H2O2 system. Cellulose 27(2), 1071–1083.
  • 5. Fei X., Yao J., Du J., Sun C., Xiang Z., & Xu C. (2015). Analysis of factors affecting the performance of activated peroxide systems on bleaching of cotton fabric. Cellulose 22, 1379–1388.
  • 6. Farooq A., Ali S., Abbas N., Fatima G A., & Ashraf, M A. (2013). Comparative performance evaluation of conventional bleaching and enzymatic bleaching with glucose oxidase on knitted cotton fabric. Journal of Cleaner Production 42, 167–171.
  • 7. Zeghioud H., Assadi AA., Khellaf N., Djelal H., Amrane A., & Rtimi,S. (2018). Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: dynamics and mechanism. Journal of Photochemistry and Photobiology A: Chemistry 365, 94–102.
  • 8. Rahal R., Pigot T., Foix D., & Lacombe S. (2011). Photocatalytic efficiency and self-cleaning properties under visible light of cotton fabrics coated with sensitized TiO2. Applied Catalysis B: Environmental 104(3–4), 361–372.
  • 9. Ashar A., Bhutta Z A., Shoaib M., Alharbi NK., Fakhar-e-Alam M., Atif M., et al. (2023). Cotton fabric loaded with ZnO nanoflowers as a photocatalytic reactor with promising antibacterial activity against pathogenic E. coli. Arabian Journal of Chemistry 105084.
  • 10. Xia C., Liu S., Cui B., Li M., Wang H., Liang C. (2022). In situ synthesis of zinc oxide/selenium composite for UV blocker application. International Journal of Applied Ceramic Technology 19(5), 2437–2449.
  • 11. Sirelkhatim A., Mahmud S., Seeni A., Kaus NHM., Ann LC., Bakhori SKM.(2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7, 219–242.
  • 12. Raghupathi KR., Koodali RT., & Manna, AC. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028.
  • 13. Miri A., Mahdinejad N., Ebrahimy O., Khatami M., & Sarani M. (2019). Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Materials Science and Engineering: C 104, 109981.
  • 14. Singh P., & Nanda A. (2013). Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles. J. Chem. Pharm. Res 5(11), 457–463.
  • 15. Montazer M., & Morshedi S. (2012). Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. International Journal of Biological Macromolecules 50(4), 1018–1025.
  • 16. Behnajady MA., Modirshahla N., & Hamzavi R. (2006). Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 133(1), 226–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2005.10.022
  • 17. Selvakumar N., Azhagurajan A.,Natarajan TS., & Mohideen Abdul KhadirM. (2012). Flame‐retardant fabric systems based on electrospun polyamide/boric acid nanocomposite fibers. Journal of applied polymer science 126(2), 614–619.
  • 18. Arvanitis C., Rook T., & Macreadie I. (2020). Mechanism of action of potent boron-containing antifungals. Current Bioactive Compounds 16(5), 552–556.
  • 19. Estevez-Fregoso E., Farfán-García E D., García-Coronel I H., Martínez-Herrera E., Alatorre A., Scorei R. I., Soriano-Ursúa M. A. (2021). Effects of boron-containing compounds in the fungal kingdom. Journal of Trace Elements in Medicine and Biology 65, 126714.
  • 20.Mehedintu C., Bratila E., Cirstoiu M., Petca A., Brinduse L. A., Berceanu C. (2019). Evaluation of effectiveness and tolerability of boric acid in the treatment of vaginal infection with Candida Species. Rev Chim 70, 2375–2378.
  • 21. Istriana N., & Priadi T. (2021, November). The resistance of modified manii wood with boric acid and chitosan/glycerol and heating against fungi and termites. In IOP Conference Series: Earth and Environmental Science (Vol. 891, No. 1, p. 012010). IOP Publishing.
  • 22. Huang Y., Ho W., Ai Z., Song X., Zhang L., & Lee, S. (2009). Aerosol-assisted flow synthesis of B-doped, Ni-doped and B–Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Applied Catalysis B: Environmental 89(3), 398–405.
  • 23. Zheng, J., Liu, Z., Liu, X., Yan, X., Li, D., & Chu, W. (2011). Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity. Journal of Alloys and Compounds 509(9), 3771–3776.
  • 24. Bilgin Simsek E. (2017). Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Applied Catalysis B: Environmental 200, 309–322.
  • 25. Erim B., Ciğeroğlu Z., & Bayramoğlu M. (2021). Green synthesis of TiO2/GO/chitosan by using leaf extract of Olea europaea as a highly efficient photocatalyst for the degradation of cefixime trihydrate under UV-A radiation exposure: An optimization study with d-optimal design. Journal of Molecular Structure 1234, 130194.
  • 26. Steffy K., Shanthi G., Maroky A. S., & Selvakumar S. (2018). Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. Journal of Advanced Research 9, 69–77.
  • 27. Ciğeroğlu Z., ŞahinS., Kazan E. S. (2022). One-pot green preparation of deep eutectic solvent-assisted ZnO/GO nanocomposite for cefixime trihydrate photocatalytic degradation under UV-A irradiation. Biomass Conversion and Biorefinery 12, 73-86.
  • 28. Zhang W., Liu T., & Xu, J. (2016). Preparation and characterization of 10 B boric acid with high purity for nuclear industry. SpringerPlus 5, 1-10.
  • 29. Mallakpour S., Dinari M., (2012). Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process. Prog. Org. coatings 75, 373–378.
  • 30. Ahmad A.A., Alakhras L.A., Al-Bataineh Q.M., Telfah A., 2023. Impact of metal doping on the physical characteristics of anatase titanium dioxide (TiO2) films. J. Mater. Sci. Mater. Electron 34, 1552. https://doi.org/10.1007/s10854-023-10948-z
  • 31. Erim B., Ciğeroğlu Z., Şahin S., & Vasseghian Y. (2022). Photocatalytic degradation of cefixime in aqueous solutions using functionalized SWCNT/ZnO/Fe3O4 under UV-A irradiation. Chemosphere 291, 132929.
  • 32. Harabor A., Rotaru P., Score, R. I., & Harabor N. A. (2014). Non-conventional hexagonal structure for boric acid. Journal of Thermal Analysis and Calorimetry 118, 1375-1384.
  • 33. Elbeyli İY. (2015). Production of crystalline boric acid and sodium citrate from borax decahydrate. Hydrometallurgy 158, 19-26.
  • 34. Li W., Liang R., Hu A., Huang Z., & Zhou YN. (2014). Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC advances 4(70), 36959-36966.
  • 35. Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., & Chai, Z. (2010). Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research 12, 1645-1654.
  • 36. Deniz F., & Akarsu C. (2018). Operating cost and treatment of boron from aqueous solutions by electrocoagulation in low concentration. Global Challenges 2(5-6), 1800011.
  • 37. Perales-Martínez I A., & Rodríguez-González V. (2017). Towards the hydrothermal growth of hierarchical cauliflower-like TiO 2 anatase structures. Journal of Sol-Gel Science and Technology 81, 741-749.
  • 38.Arik B., & Karaman Atmaca OD. (2020). The effects of sol–gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric. Cellulose, 27, 8385-8403. 39.GaoY., Li Y., Yao L., Li S., Liu J., & Zhang H. (2017). Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway. Journal of hazardous materials, 329, 272-279.

Photocatalytic Activity of Zinc Oxide Nano Particules and Boric Acid for Bleaching Process on Cotton Fabric

Year 2024, Volume: 34 Issue: 4, 454 - 466
https://doi.org/10.32710/tekstilvekonfeksiyon.1397188

Abstract

In this study, a photocatalytic process was applied as an alternative to conventional hydrogen peroxide bleaching on 100% cotton fabric. The effects of ZnO nanoparticles and boric acid as catalysts were investigated. Additionally, the synergistic impact of boric acid on the well-known bleaching effect of titanium dioxide nanoparticles was explored. Unlike existing literature, the study uniquely addressed whether the photocatalytic process, without the use of any catalyst, has a specific effect, particularly in whitening, on the color spectrum. All conducted photocatalytic processes on cotton fabrics were compared with conventional hydrogen peroxide bleaching in terms of color spectra (CIE L*, a*, b*, whiteness indexes) besides the SEM, SEM-EDX, and FTIR-ATR characterization tests. Moreover, XRD, SEM, and FTIR-ATR analysis results of ZnO nanoparticles were also shared in this study. This research is believed to shed light on future studies by evaluating more environmentally friendly pre-treatment processes in textile industry.

References

  • 1. Wang H., Siddiqui M. Q., & Memon H. (2020). Processing Physical Structure, properties and quality of cotton. Wang, H, Memon, H. Cotton science and processing technology: Gene, ginning, garment and green recycling. Springer 79–97.
  • 2. Gordon S., Rodgers J., & Abidi N. (2017). Cotton fibre cross-section properties. Cotton fibres, characteristics, uses and performance, Nova 65–86.
  • 3. Pereira L., Bastos C., Tzanov T., Cavaco-Paulo A., & Gübitz G. M. (2005). Environmentally friendly bleaching of cotton using laccases. Environmental Chemistry Letters 3, 66–69.
  • 4. Wang N., Tang P., Zhao C., Zhang Z., & Sun G. (2020). An environmentally friendly bleaching process for cotton fabrics: mechanism and application of UV/H2O2 system. Cellulose 27(2), 1071–1083.
  • 5. Fei X., Yao J., Du J., Sun C., Xiang Z., & Xu C. (2015). Analysis of factors affecting the performance of activated peroxide systems on bleaching of cotton fabric. Cellulose 22, 1379–1388.
  • 6. Farooq A., Ali S., Abbas N., Fatima G A., & Ashraf, M A. (2013). Comparative performance evaluation of conventional bleaching and enzymatic bleaching with glucose oxidase on knitted cotton fabric. Journal of Cleaner Production 42, 167–171.
  • 7. Zeghioud H., Assadi AA., Khellaf N., Djelal H., Amrane A., & Rtimi,S. (2018). Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: dynamics and mechanism. Journal of Photochemistry and Photobiology A: Chemistry 365, 94–102.
  • 8. Rahal R., Pigot T., Foix D., & Lacombe S. (2011). Photocatalytic efficiency and self-cleaning properties under visible light of cotton fabrics coated with sensitized TiO2. Applied Catalysis B: Environmental 104(3–4), 361–372.
  • 9. Ashar A., Bhutta Z A., Shoaib M., Alharbi NK., Fakhar-e-Alam M., Atif M., et al. (2023). Cotton fabric loaded with ZnO nanoflowers as a photocatalytic reactor with promising antibacterial activity against pathogenic E. coli. Arabian Journal of Chemistry 105084.
  • 10. Xia C., Liu S., Cui B., Li M., Wang H., Liang C. (2022). In situ synthesis of zinc oxide/selenium composite for UV blocker application. International Journal of Applied Ceramic Technology 19(5), 2437–2449.
  • 11. Sirelkhatim A., Mahmud S., Seeni A., Kaus NHM., Ann LC., Bakhori SKM.(2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7, 219–242.
  • 12. Raghupathi KR., Koodali RT., & Manna, AC. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028.
  • 13. Miri A., Mahdinejad N., Ebrahimy O., Khatami M., & Sarani M. (2019). Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Materials Science and Engineering: C 104, 109981.
  • 14. Singh P., & Nanda A. (2013). Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles. J. Chem. Pharm. Res 5(11), 457–463.
  • 15. Montazer M., & Morshedi S. (2012). Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. International Journal of Biological Macromolecules 50(4), 1018–1025.
  • 16. Behnajady MA., Modirshahla N., & Hamzavi R. (2006). Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 133(1), 226–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2005.10.022
  • 17. Selvakumar N., Azhagurajan A.,Natarajan TS., & Mohideen Abdul KhadirM. (2012). Flame‐retardant fabric systems based on electrospun polyamide/boric acid nanocomposite fibers. Journal of applied polymer science 126(2), 614–619.
  • 18. Arvanitis C., Rook T., & Macreadie I. (2020). Mechanism of action of potent boron-containing antifungals. Current Bioactive Compounds 16(5), 552–556.
  • 19. Estevez-Fregoso E., Farfán-García E D., García-Coronel I H., Martínez-Herrera E., Alatorre A., Scorei R. I., Soriano-Ursúa M. A. (2021). Effects of boron-containing compounds in the fungal kingdom. Journal of Trace Elements in Medicine and Biology 65, 126714.
  • 20.Mehedintu C., Bratila E., Cirstoiu M., Petca A., Brinduse L. A., Berceanu C. (2019). Evaluation of effectiveness and tolerability of boric acid in the treatment of vaginal infection with Candida Species. Rev Chim 70, 2375–2378.
  • 21. Istriana N., & Priadi T. (2021, November). The resistance of modified manii wood with boric acid and chitosan/glycerol and heating against fungi and termites. In IOP Conference Series: Earth and Environmental Science (Vol. 891, No. 1, p. 012010). IOP Publishing.
  • 22. Huang Y., Ho W., Ai Z., Song X., Zhang L., & Lee, S. (2009). Aerosol-assisted flow synthesis of B-doped, Ni-doped and B–Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Applied Catalysis B: Environmental 89(3), 398–405.
  • 23. Zheng, J., Liu, Z., Liu, X., Yan, X., Li, D., & Chu, W. (2011). Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity. Journal of Alloys and Compounds 509(9), 3771–3776.
  • 24. Bilgin Simsek E. (2017). Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Applied Catalysis B: Environmental 200, 309–322.
  • 25. Erim B., Ciğeroğlu Z., & Bayramoğlu M. (2021). Green synthesis of TiO2/GO/chitosan by using leaf extract of Olea europaea as a highly efficient photocatalyst for the degradation of cefixime trihydrate under UV-A radiation exposure: An optimization study with d-optimal design. Journal of Molecular Structure 1234, 130194.
  • 26. Steffy K., Shanthi G., Maroky A. S., & Selvakumar S. (2018). Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. Journal of Advanced Research 9, 69–77.
  • 27. Ciğeroğlu Z., ŞahinS., Kazan E. S. (2022). One-pot green preparation of deep eutectic solvent-assisted ZnO/GO nanocomposite for cefixime trihydrate photocatalytic degradation under UV-A irradiation. Biomass Conversion and Biorefinery 12, 73-86.
  • 28. Zhang W., Liu T., & Xu, J. (2016). Preparation and characterization of 10 B boric acid with high purity for nuclear industry. SpringerPlus 5, 1-10.
  • 29. Mallakpour S., Dinari M., (2012). Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process. Prog. Org. coatings 75, 373–378.
  • 30. Ahmad A.A., Alakhras L.A., Al-Bataineh Q.M., Telfah A., 2023. Impact of metal doping on the physical characteristics of anatase titanium dioxide (TiO2) films. J. Mater. Sci. Mater. Electron 34, 1552. https://doi.org/10.1007/s10854-023-10948-z
  • 31. Erim B., Ciğeroğlu Z., Şahin S., & Vasseghian Y. (2022). Photocatalytic degradation of cefixime in aqueous solutions using functionalized SWCNT/ZnO/Fe3O4 under UV-A irradiation. Chemosphere 291, 132929.
  • 32. Harabor A., Rotaru P., Score, R. I., & Harabor N. A. (2014). Non-conventional hexagonal structure for boric acid. Journal of Thermal Analysis and Calorimetry 118, 1375-1384.
  • 33. Elbeyli İY. (2015). Production of crystalline boric acid and sodium citrate from borax decahydrate. Hydrometallurgy 158, 19-26.
  • 34. Li W., Liang R., Hu A., Huang Z., & Zhou YN. (2014). Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC advances 4(70), 36959-36966.
  • 35. Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., & Chai, Z. (2010). Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research 12, 1645-1654.
  • 36. Deniz F., & Akarsu C. (2018). Operating cost and treatment of boron from aqueous solutions by electrocoagulation in low concentration. Global Challenges 2(5-6), 1800011.
  • 37. Perales-Martínez I A., & Rodríguez-González V. (2017). Towards the hydrothermal growth of hierarchical cauliflower-like TiO 2 anatase structures. Journal of Sol-Gel Science and Technology 81, 741-749.
  • 38.Arik B., & Karaman Atmaca OD. (2020). The effects of sol–gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric. Cellulose, 27, 8385-8403. 39.GaoY., Li Y., Yao L., Li S., Liu J., & Zhang H. (2017). Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway. Journal of hazardous materials, 329, 272-279.
There are 38 citations in total.

Details

Primary Language English
Subjects Textile Finishing
Journal Section Articles
Authors

Zeynep Ciğeroğlu 0000-0001-5625-6222

Zeynep Ömeroğulları 0000-0002-1526-8662

Early Pub Date January 1, 2025
Publication Date
Submission Date November 28, 2023
Acceptance Date August 8, 2024
Published in Issue Year 2024 Volume: 34 Issue: 4

Cite

APA Ciğeroğlu, Z., & Ömeroğulları, Z. (2025). Photocatalytic Activity of Zinc Oxide Nano Particules and Boric Acid for Bleaching Process on Cotton Fabric. Textile and Apparel, 34(4), 454-466. https://doi.org/10.32710/tekstilvekonfeksiyon.1397188

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.