Research Article
BibTex RIS Cite
Year 2025, Volume: 35 Issue: 1, 11 - 18

Abstract

References

  • 1. Hadjieva M, Kanev S, Argirov J. 1992. Thermophysical Properties of Some Paraffins Applicable to Thermal Energy Storage, Sol. Energy Mater. Sol. Cells. 27, 181-187. https://doi.org/10.1016/0927-0248(92)90119-A
  • 2. Rozanna D, Salmiah A, Chuah TG, Choong TSY, Sa'ari M. 2006. A study on thermal characteristics of phase change material (PCM) in gypsum board for building application, Int. J. Green Energy, 1, 495-513. https://doi.org/10.1081/GE-200038722
  • 3. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim, HY. 2017. Electrospinned nanofibers: New generation materials for advanced applications, Mater. Sci. Eng., B, 217, 36-48. https://doi.org/ 10.1016/j.mseb.2017.01.001.
  • 4. Feng C, Khulbe, KC, Matsuura, T. 2009. Characterization. and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization, J. Appl. Polym. Sci. 115, 756-776. https://doi.org/10.1002/app.31059.
  • 5. Du J, Liu D, Chen S, Wan D, Pu H. 2016. Novel method for fabricating continuous polymer nanofibers, Polymer, 102, 209–213. https://doi.org/10.1016/j.polymer.2016.09.018.
  • 6. Kizildag N. 2021. Smart composite nanofiber mats with thermal management functionality, Sci. Rep. 11, 4256. https://doi.org/ 10.1038/s41598-021-83799-5
  • 7. Cai Y, Gao C, Xu X, Fu Z, Fei X, Zhao Y, Chen Q, Liu X, Wei Q, He G, Fong, H. 2012. Electrospinned ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy, Sol. Energy Mater. Sol. Cells. 103, 53–61. https://doi.org/10.1016/ j.solmat.2012.04.031.
  • 8. Chen C, Wang L, Huang Y. 2009. Ultrafine electrospinned fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials, Chem. Eng. J. 150, 269–274. https://doi.org/10.1016/j.cej.2009.03.007.
  • 9. Pielichowski K, Flejtuch K. 2002. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials, Polym. Adv. Technol. 13, 690–696. https://doi.org/10.1002/pat.276.
  • 10. Alkan C, Günther E, Hiebler S, Himpel M. 2012. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials, Energy Convers. Manage. 64, 364–370. https://doi.org/10.1016/ j.enconman.2012.06.003.
  • 11. Sundararajan S, Samui AB, Kulkarni PS. 2017. Shape-stabilized poly(ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending, Sol. Energy, 144, 32-39. https://doi.org/10.1016/j.solener.2016.12.056.
  • 12. Yan D, Tang B, Zhang S. 2020. Preparation and performances of sunlight-induced phase change PEG/SiO2-dye composite for solar energy conversion and storage, Sol. Energy Mater. Sol. Cells, 215, 110657. https://doi.org/10.1016/j.solmat.2020.110657.
  • 13. Karaman S, Karaipekli A, Sarı A, Biçer A. 2011. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 95, 1647–1653. https://doi.org/10.1016/j.solmat.2011.01.022.
  • 14. Wei D, Wu C, Jiang G, Sheng X, Xie Y. 2021. Lignin-assisted construction of well-defined 3D graphene aerogel/PEG form-stable phase change composites towards efficient solar thermal energy storage, Sol. Energy Mater. Sol. Cells, 224, 111013. https://doi.org/10.1016/j.solmat.2021.111013.
  • 15. Gök Ö, Alkan C. 2021. Poly(ethylene glycol)s grafted celluloses as solid–solid phase change materials for different thermal energy storage application temperatures and through isophorone linkage, J. Therm. Anal. Calorim. 146, 1511–1523. https://doi.org/10.1007/ s10973-020-09974-4.
  • 16. Güngör Ertuğral T, Alkan, C. 2021. Synthesis of thermally protective PET–PEG multiblock copolymers as food packaging materials, Polym. Polym. Compos. 29, 1125–1133. https://doi.org/10.1177/ 09673911211045683.
  • 17. Wang F, Zhang P, Mou Y, Kang M, Liu M, Song L, Lu A, Rong J. 2017. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage, Polym. Test. 63, 494-504. https://doi.org/10.1016/j.polymertesting.2017.09.005.
  • 18. Fan X, Pu Z, Zhu M, Jiang Z, Xu, J. 2021. Solvent-free synthesis of PEG modified polyurethane solid-solid phase change materials with different Mw for thermal energy storage, Colloid Polym. Sci. 299, 835–843. https://doi.org/10.1007/s00396-020-04804-3.
  • 19. Spasova M, Stoilova O, Manolova N, Rashkov I, Altankov G. 2007. Preparation of PLLA/PEG Nanofibers by Electrospinning and Potential Applications, J. Bioact. Compact. Polym. 22, 62-76. https://doi.org/10.1177/0883911506073570.
  • 20. Scaffaro R, Lopresti F, Maio A, Botta L, Rigogliuso S, Ghersi G. 2017. Electrospinned PCL/GO-g-PEG structures: Processing-morphology-properties relationships, Composites, Part A, 92, 97–107. https://doi.org/10.1016/j.compositesa.2016.11.005.
  • 21. Jafarpour M, Aghdam AS, Koşar A, Cebeci FÇ, Ghorbani M. 2021. Electrospinned PCL/GO-g-PEG structures: Processing-morphology-properties relationships, Mater. Today Commun. 29, 102865. https://doi.org/10.1016/j.mtcomm.2021.102865.
  • 22. Yang K, Venkataraman M, Zhang X, Wiener J, Zhu G, Yao J, Militky J. 2022. Review: incorporation of organic PCMs into textiles, J. Mater. Sci. 1-50. https://doi.org/10.1007/s10853-021-06641-3
  • 23. Cai Y, Ke H, Lin L, Fei X, Wei Q, Song L, Hu Y, Fong H. 2012. Preparation, morphology and thermal properties of electrospinned fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage, Energ. Convers. Manage. 64, 245–255. https://doi.org/10.1016/ j.enconman.2012.04.018
  • 24. Hu W, Yu X. 2012. Encapsulation of bio-based PCM with coaxial electrospinned ultrafine fiber, Rsc. Adv. 2, 5580–5584. https://doi.org/10.1039/c2ra20532g
  • 25. Cai Y, Ke H, Zhang T, Dong J, Qiao H, Wang H, Xu Z, Wei1 Q, Zhao Y, Fong H. 2011. Preparation, Morphology and Properties of Electrospinned Lauric Acid/ PET Form-Stable Phase Change Ultrafine Composite Fibres, Polym. Polym. Compos. 19, 773–780. https://doi.org/10.1177/096739111101900907.
  • 26. Kizildag N. 2021. Smart composite nanofiber mats with thermal management functionality. Sci. Rep-uk. 11, 4256. https://doi.org/10.1038/s41598-021-83799-5
  • 27. Lin C, Li W, Yan Y, Ke H, Liu Z, Deng L, Qiu Z. 2021. Ultrafine electrospinned fiber based on ionic liquid/AlN/copolyamide composite as novel form-stable phase change material for thermal energy storage, Sol. Energ. Mat. Sol. C. 110953. https://doi.org/ 10.1016/j.solmat.2020.110953.
  • 28. Chen C, Liu S, Liu W, Zhao Y, Lu LY. 2012. Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers, Sol. Energ. Mat. Sol. C. 96 (2012) 202–209. https://doi.org/10.1016/j.solmat.2011.09.057
  • 29. Xie N, Niu X. Gao Y, Fang Z. Zhang Z. 2020. Fabrication and characterization of electrospinned fatty acid form-stable phase change materials in the presence of copper nanoparticles, Int. J. Energ. Res. 44, 8567–8577. https://doi.org/10.1002/er.5543
  • 30. Chen C, Wang L, Huang Y. 2011. Electrospinned phase change fibers based on polyethylene glycol/cellulose acetate blends, Appl. Energ. 88, 3133–3139. https://doi.org/10.1016/j.apenergy.2011.02.026
  • 31. Esmaeilzadeh Z, Rezaei B, Shoushtari AM, Mojtahedi MRM. 2018. Enhancing the thermal characteristics of shape-stabilized phase change nanocomposite nanofibers by incorporation of multiwalled carbon nanotubes within the nanofibrous structure, Adv. Polym. Tech. 37,185–193. https://doi.org/10.1002/adv.21655
  • 32. Noyan EC, Onder E, Sarier N, Arat R. 2018. Development of heat storing poly(acrylonitrile) nanofibers by coaxial electrospinning, Thermochim. Acta, 662, 135-148. https://doi.org/10.1016/ j.tca.2018.02.008
  • 33. Ji R, Zhang Q, Zhou F, Xu F, Wang X, Huang C, Zhu Y, Zhang H, Sun L, Xia Y, Lin X, Peng H, Zou Y, Chu H. 2021. Electrospinning fabricated novel poly (ethylene glycol)/graphene oxide composite phase-change nanofibers with good shape stability for thermal regulation, J. Energy Storage, 40, 102687. https://doi.org/10.1016/ j.est.2021.102687
  • 34. Liu X, Wang C, Cai Z, Hu Z, Zhu P. 2022. Fabrication and characterization of polyacrylonitrile and polyethylene glycol composite nanofibers by electrospinning, J. Energy Storage, 53, 105171. https://doi.org/10.1016/j.est.2022.105171
  • 35. Ziabicki A. 1976. Fundamentals of fiber formation, John Wiley and Sons, London, ISBN 0-471-98220-2.
  • 36. Li D, Xia Y. 2004. Electrospinning of Nanofibers: Reinventing the Wheel?, Adv. Mater. 16, 1151–1170. doi:10.1002/adma.200400719. S2CID 137659394.
  • 37. https://en.wikipedia.org/wiki/Electrospinning March 14, 2023
  • 38. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. 2005. Electrospinning of nanofibers, J. Appl. Polym. Sci. 96(2), 557–569. https://doi.org/10.1002/app.21481.
  • 39. Jian F, Xungai W, Lin T. 2011. Functional applications of electrospinned nanofibers. In Nanofibers-Production, Properties and Functional Applications (ed. Lin, T.),17-18.
  • 40. Reneker DH, Yarin AL. 2008. Electrospinning jets and polymer nanofibers, Polymer, 49 2387–2425. https://doi.org/10.1016/j. polymer.2008.02.002.
  • 41. Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M. 2011. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning, Eur. Polym. J. 47, 1402–1409. https://doi.org/10.1016/ j.eurpolymj.2011.04.002
  • 42. Barhate RS, Ramakrishna S. 2007. Nanofibrous filtering media: Filtration problems and solutions from tiny materials, J. Membr. Sci. 296(1), 1–8. https://doi.org/10.1016/j.memsci.2007.03.038.
  • 43. Wang L, Yu Y, Chen PC, Zhang DW, Chen CH. 2008. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries, J. Power Sources, 183(2), 717–723. https://doi.org/10.1016/ j.jpowsour. 2008.05.079.
  • 44. Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang I, Kwon OH. 2005. A composite of hydroxyapatite with electrospinned biodegradable nanofibers as a tissue engineering material, J. Biosci. Bioeng. 100(1), 43–49. https://doi.org/10.1263/jbb.100.43.
  • 45. Yang D, Li Y, Nie J. 2007. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs, Carbohydr. Polym. 69, 538–543. https://doi.org/10.1016/j.carbpol.2007.01.008.
  • 46. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai, N. 2003. Electrospinned nanofibrous polyurethane membrane as wound dressing, J. Biomed. Mater. Res. B Appl. Biomater. 67(2), 675–679. https://doi.org/10.1002/jbm.b.10058.
  • 47. Wei Hua H, Yu Zhi W, Jian Min S, Xin X, Yin Da G, Yun-Ze L, Seeram R. 2019. Fabrication of nanofibrous sensors by electrospinning, Sci. China Technol. Sci. 62(6), 886–894. https://doi.org/10.1007/s11431-018-9405-5
  • 48. Daelemans L, Kizildag N, Van Paepegem W, D’Hooge DR, De Clerck K, Interdiffusing core-shell nanofiber interleaved composites for excellent Mode I and Mode II delamination resistance, Compos. Sci. Technol. 175, 143–150. https://doi.org/10.1016/ j.compscitech.2019.03.019
  • 49. Kizildag N, Ucar N, Karacan I, Onen A, Demirsoy N. 2014. The effect of the dissolution process and the polyaniline content on the properties of polyacrylonitrile– polyaniline composite nanoweb, J. Ind. Text. 45, 1548–1570. https://doi.org/10.1177/15280 83714564636.
  • 50. Mahapatra A, Garg N, Nayak BP, Mishra BG, Hota G. 2012. Studies on the synthesis of electrospinned PAN-Ag composite nanofibers for antibacterial application, J. Appl. Polym. Sci. 124, 1178–1185. https://doi.org/10.1002/app.35076.
  • 51. Eren O, Ucar N, Onen A, Kizildag N, Karacan I. 2016. Synergistic effect of polyaniline, nanosilver, and carbon nanotube mixtures on the structure and properties of polyacrylonitrile composite nanofiber, J. Compos. Mater. 50, 2073–2086. https://doi. org/10.1177/0021998315601891.
  • 52. Brar AS, Kaur J. 2005. 2D NMR studies of acrylonitrile–methyl acrylate copolymers, Eur. Polym. J. 4, 2278–2289. https://doi.org/10.1016/j.eurpolymj.2005.05.003.
  • 53. Ballard N, Asua JM. 2018. Radical polymerization of acrylic monomers: An overview, Prog. Polym. Sci. 79, 40–60. https://doi.org/10.1016/j.progpolymsci.2017.11.002.
  • 54. Wang H, Niu H, Wang H, Wang W, Jin X, Wang H, Zhou H, Lin T. 2021. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance, J. Power Sources Adv. 482, 228986. https://doi.org/10.1016/ j.jpowsour.2020.228986.
  • 55. Yang E, Qin X, Wang S. 2008. Electrospinned crosslinked polyvinyl alcohol membrane, Mater. Lett. 62, 3555-3557. https://doi.org/ 10.1016/j.matlet.2008.03.049
  • 56. Uyar T, Balan A, Toppare L, Besenbacher, F. 2009. Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers, Polymer, 50, 475–480. https://doi.org/10.1016/ j.polymer.2008.11.021.
  • 57. Yunus H, Sabır EC, İçoğlu Hİ, Yıldırım B, Gülnaz O, Topalbekiroğlu M. 2023. Characterization and Antibacterial Activity of Electrospinned Polyethylene oxide/Chitosan Nanofibers. Tekstil ve Konfeksiyon. 33(1) 1-8.
  • 58. İçoğlu Hİ, Oğulata RT. 2017. Effect of ambient parameters on morphology of electrospinned poly (trimethylene terephthalate) (ptt) fibers. Tekstil ve Konfeksiyon. 27(3): 215-223.

PEG2000@PAN Composite Electrospun Nanostructures as Shape Stabilised Phase Change Materials for Thermal Energy Storage

Year 2025, Volume: 35 Issue: 1, 11 - 18

Abstract

In this study, nanostructures were produced through electrospinning from poly(ethylene glycol) 2000 (PEG2000)/polyacrylonitrile (PAN) solutions in N,N-dimethylformamide (DMF). Since PAN is the most easily spun polymer, it acts as a scaffold for nano-dispersed PEG2000 that cannot be electrospun into nanofiber. In this way, PEG2000@PAN electrospun materials can be easily applied. The solutions prepared are 10%, 20% and 35% PAN by mass in DMF because further ratios showed leakage when PEG2000 was liquid. In the resulting structure, PEG2000 dispersed randomly in PAN nanofibrils which are sufficient for shape stability and nanodispersion efficiency. DSC analysis performed in the range of 0-70 ℃ revealed the melting enthalpies of PEG2000@PAN 10/90, PEG2.000@PAN 20/80 and PEG2000@PAN 35/65 nanofibers as averages of 1.8 J.g-1, 39.4 J.g-1, and 46.3 J.g-1, respectively. According to the SEM images, PEG2000@PAN nanofabrics showed increasing aggregation with the PEG2000 content.

References

  • 1. Hadjieva M, Kanev S, Argirov J. 1992. Thermophysical Properties of Some Paraffins Applicable to Thermal Energy Storage, Sol. Energy Mater. Sol. Cells. 27, 181-187. https://doi.org/10.1016/0927-0248(92)90119-A
  • 2. Rozanna D, Salmiah A, Chuah TG, Choong TSY, Sa'ari M. 2006. A study on thermal characteristics of phase change material (PCM) in gypsum board for building application, Int. J. Green Energy, 1, 495-513. https://doi.org/10.1081/GE-200038722
  • 3. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim, HY. 2017. Electrospinned nanofibers: New generation materials for advanced applications, Mater. Sci. Eng., B, 217, 36-48. https://doi.org/ 10.1016/j.mseb.2017.01.001.
  • 4. Feng C, Khulbe, KC, Matsuura, T. 2009. Characterization. and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization, J. Appl. Polym. Sci. 115, 756-776. https://doi.org/10.1002/app.31059.
  • 5. Du J, Liu D, Chen S, Wan D, Pu H. 2016. Novel method for fabricating continuous polymer nanofibers, Polymer, 102, 209–213. https://doi.org/10.1016/j.polymer.2016.09.018.
  • 6. Kizildag N. 2021. Smart composite nanofiber mats with thermal management functionality, Sci. Rep. 11, 4256. https://doi.org/ 10.1038/s41598-021-83799-5
  • 7. Cai Y, Gao C, Xu X, Fu Z, Fei X, Zhao Y, Chen Q, Liu X, Wei Q, He G, Fong, H. 2012. Electrospinned ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy, Sol. Energy Mater. Sol. Cells. 103, 53–61. https://doi.org/10.1016/ j.solmat.2012.04.031.
  • 8. Chen C, Wang L, Huang Y. 2009. Ultrafine electrospinned fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials, Chem. Eng. J. 150, 269–274. https://doi.org/10.1016/j.cej.2009.03.007.
  • 9. Pielichowski K, Flejtuch K. 2002. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials, Polym. Adv. Technol. 13, 690–696. https://doi.org/10.1002/pat.276.
  • 10. Alkan C, Günther E, Hiebler S, Himpel M. 2012. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials, Energy Convers. Manage. 64, 364–370. https://doi.org/10.1016/ j.enconman.2012.06.003.
  • 11. Sundararajan S, Samui AB, Kulkarni PS. 2017. Shape-stabilized poly(ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending, Sol. Energy, 144, 32-39. https://doi.org/10.1016/j.solener.2016.12.056.
  • 12. Yan D, Tang B, Zhang S. 2020. Preparation and performances of sunlight-induced phase change PEG/SiO2-dye composite for solar energy conversion and storage, Sol. Energy Mater. Sol. Cells, 215, 110657. https://doi.org/10.1016/j.solmat.2020.110657.
  • 13. Karaman S, Karaipekli A, Sarı A, Biçer A. 2011. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 95, 1647–1653. https://doi.org/10.1016/j.solmat.2011.01.022.
  • 14. Wei D, Wu C, Jiang G, Sheng X, Xie Y. 2021. Lignin-assisted construction of well-defined 3D graphene aerogel/PEG form-stable phase change composites towards efficient solar thermal energy storage, Sol. Energy Mater. Sol. Cells, 224, 111013. https://doi.org/10.1016/j.solmat.2021.111013.
  • 15. Gök Ö, Alkan C. 2021. Poly(ethylene glycol)s grafted celluloses as solid–solid phase change materials for different thermal energy storage application temperatures and through isophorone linkage, J. Therm. Anal. Calorim. 146, 1511–1523. https://doi.org/10.1007/ s10973-020-09974-4.
  • 16. Güngör Ertuğral T, Alkan, C. 2021. Synthesis of thermally protective PET–PEG multiblock copolymers as food packaging materials, Polym. Polym. Compos. 29, 1125–1133. https://doi.org/10.1177/ 09673911211045683.
  • 17. Wang F, Zhang P, Mou Y, Kang M, Liu M, Song L, Lu A, Rong J. 2017. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage, Polym. Test. 63, 494-504. https://doi.org/10.1016/j.polymertesting.2017.09.005.
  • 18. Fan X, Pu Z, Zhu M, Jiang Z, Xu, J. 2021. Solvent-free synthesis of PEG modified polyurethane solid-solid phase change materials with different Mw for thermal energy storage, Colloid Polym. Sci. 299, 835–843. https://doi.org/10.1007/s00396-020-04804-3.
  • 19. Spasova M, Stoilova O, Manolova N, Rashkov I, Altankov G. 2007. Preparation of PLLA/PEG Nanofibers by Electrospinning and Potential Applications, J. Bioact. Compact. Polym. 22, 62-76. https://doi.org/10.1177/0883911506073570.
  • 20. Scaffaro R, Lopresti F, Maio A, Botta L, Rigogliuso S, Ghersi G. 2017. Electrospinned PCL/GO-g-PEG structures: Processing-morphology-properties relationships, Composites, Part A, 92, 97–107. https://doi.org/10.1016/j.compositesa.2016.11.005.
  • 21. Jafarpour M, Aghdam AS, Koşar A, Cebeci FÇ, Ghorbani M. 2021. Electrospinned PCL/GO-g-PEG structures: Processing-morphology-properties relationships, Mater. Today Commun. 29, 102865. https://doi.org/10.1016/j.mtcomm.2021.102865.
  • 22. Yang K, Venkataraman M, Zhang X, Wiener J, Zhu G, Yao J, Militky J. 2022. Review: incorporation of organic PCMs into textiles, J. Mater. Sci. 1-50. https://doi.org/10.1007/s10853-021-06641-3
  • 23. Cai Y, Ke H, Lin L, Fei X, Wei Q, Song L, Hu Y, Fong H. 2012. Preparation, morphology and thermal properties of electrospinned fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage, Energ. Convers. Manage. 64, 245–255. https://doi.org/10.1016/ j.enconman.2012.04.018
  • 24. Hu W, Yu X. 2012. Encapsulation of bio-based PCM with coaxial electrospinned ultrafine fiber, Rsc. Adv. 2, 5580–5584. https://doi.org/10.1039/c2ra20532g
  • 25. Cai Y, Ke H, Zhang T, Dong J, Qiao H, Wang H, Xu Z, Wei1 Q, Zhao Y, Fong H. 2011. Preparation, Morphology and Properties of Electrospinned Lauric Acid/ PET Form-Stable Phase Change Ultrafine Composite Fibres, Polym. Polym. Compos. 19, 773–780. https://doi.org/10.1177/096739111101900907.
  • 26. Kizildag N. 2021. Smart composite nanofiber mats with thermal management functionality. Sci. Rep-uk. 11, 4256. https://doi.org/10.1038/s41598-021-83799-5
  • 27. Lin C, Li W, Yan Y, Ke H, Liu Z, Deng L, Qiu Z. 2021. Ultrafine electrospinned fiber based on ionic liquid/AlN/copolyamide composite as novel form-stable phase change material for thermal energy storage, Sol. Energ. Mat. Sol. C. 110953. https://doi.org/ 10.1016/j.solmat.2020.110953.
  • 28. Chen C, Liu S, Liu W, Zhao Y, Lu LY. 2012. Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers, Sol. Energ. Mat. Sol. C. 96 (2012) 202–209. https://doi.org/10.1016/j.solmat.2011.09.057
  • 29. Xie N, Niu X. Gao Y, Fang Z. Zhang Z. 2020. Fabrication and characterization of electrospinned fatty acid form-stable phase change materials in the presence of copper nanoparticles, Int. J. Energ. Res. 44, 8567–8577. https://doi.org/10.1002/er.5543
  • 30. Chen C, Wang L, Huang Y. 2011. Electrospinned phase change fibers based on polyethylene glycol/cellulose acetate blends, Appl. Energ. 88, 3133–3139. https://doi.org/10.1016/j.apenergy.2011.02.026
  • 31. Esmaeilzadeh Z, Rezaei B, Shoushtari AM, Mojtahedi MRM. 2018. Enhancing the thermal characteristics of shape-stabilized phase change nanocomposite nanofibers by incorporation of multiwalled carbon nanotubes within the nanofibrous structure, Adv. Polym. Tech. 37,185–193. https://doi.org/10.1002/adv.21655
  • 32. Noyan EC, Onder E, Sarier N, Arat R. 2018. Development of heat storing poly(acrylonitrile) nanofibers by coaxial electrospinning, Thermochim. Acta, 662, 135-148. https://doi.org/10.1016/ j.tca.2018.02.008
  • 33. Ji R, Zhang Q, Zhou F, Xu F, Wang X, Huang C, Zhu Y, Zhang H, Sun L, Xia Y, Lin X, Peng H, Zou Y, Chu H. 2021. Electrospinning fabricated novel poly (ethylene glycol)/graphene oxide composite phase-change nanofibers with good shape stability for thermal regulation, J. Energy Storage, 40, 102687. https://doi.org/10.1016/ j.est.2021.102687
  • 34. Liu X, Wang C, Cai Z, Hu Z, Zhu P. 2022. Fabrication and characterization of polyacrylonitrile and polyethylene glycol composite nanofibers by electrospinning, J. Energy Storage, 53, 105171. https://doi.org/10.1016/j.est.2022.105171
  • 35. Ziabicki A. 1976. Fundamentals of fiber formation, John Wiley and Sons, London, ISBN 0-471-98220-2.
  • 36. Li D, Xia Y. 2004. Electrospinning of Nanofibers: Reinventing the Wheel?, Adv. Mater. 16, 1151–1170. doi:10.1002/adma.200400719. S2CID 137659394.
  • 37. https://en.wikipedia.org/wiki/Electrospinning March 14, 2023
  • 38. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. 2005. Electrospinning of nanofibers, J. Appl. Polym. Sci. 96(2), 557–569. https://doi.org/10.1002/app.21481.
  • 39. Jian F, Xungai W, Lin T. 2011. Functional applications of electrospinned nanofibers. In Nanofibers-Production, Properties and Functional Applications (ed. Lin, T.),17-18.
  • 40. Reneker DH, Yarin AL. 2008. Electrospinning jets and polymer nanofibers, Polymer, 49 2387–2425. https://doi.org/10.1016/j. polymer.2008.02.002.
  • 41. Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M. 2011. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning, Eur. Polym. J. 47, 1402–1409. https://doi.org/10.1016/ j.eurpolymj.2011.04.002
  • 42. Barhate RS, Ramakrishna S. 2007. Nanofibrous filtering media: Filtration problems and solutions from tiny materials, J. Membr. Sci. 296(1), 1–8. https://doi.org/10.1016/j.memsci.2007.03.038.
  • 43. Wang L, Yu Y, Chen PC, Zhang DW, Chen CH. 2008. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries, J. Power Sources, 183(2), 717–723. https://doi.org/10.1016/ j.jpowsour. 2008.05.079.
  • 44. Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang I, Kwon OH. 2005. A composite of hydroxyapatite with electrospinned biodegradable nanofibers as a tissue engineering material, J. Biosci. Bioeng. 100(1), 43–49. https://doi.org/10.1263/jbb.100.43.
  • 45. Yang D, Li Y, Nie J. 2007. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs, Carbohydr. Polym. 69, 538–543. https://doi.org/10.1016/j.carbpol.2007.01.008.
  • 46. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai, N. 2003. Electrospinned nanofibrous polyurethane membrane as wound dressing, J. Biomed. Mater. Res. B Appl. Biomater. 67(2), 675–679. https://doi.org/10.1002/jbm.b.10058.
  • 47. Wei Hua H, Yu Zhi W, Jian Min S, Xin X, Yin Da G, Yun-Ze L, Seeram R. 2019. Fabrication of nanofibrous sensors by electrospinning, Sci. China Technol. Sci. 62(6), 886–894. https://doi.org/10.1007/s11431-018-9405-5
  • 48. Daelemans L, Kizildag N, Van Paepegem W, D’Hooge DR, De Clerck K, Interdiffusing core-shell nanofiber interleaved composites for excellent Mode I and Mode II delamination resistance, Compos. Sci. Technol. 175, 143–150. https://doi.org/10.1016/ j.compscitech.2019.03.019
  • 49. Kizildag N, Ucar N, Karacan I, Onen A, Demirsoy N. 2014. The effect of the dissolution process and the polyaniline content on the properties of polyacrylonitrile– polyaniline composite nanoweb, J. Ind. Text. 45, 1548–1570. https://doi.org/10.1177/15280 83714564636.
  • 50. Mahapatra A, Garg N, Nayak BP, Mishra BG, Hota G. 2012. Studies on the synthesis of electrospinned PAN-Ag composite nanofibers for antibacterial application, J. Appl. Polym. Sci. 124, 1178–1185. https://doi.org/10.1002/app.35076.
  • 51. Eren O, Ucar N, Onen A, Kizildag N, Karacan I. 2016. Synergistic effect of polyaniline, nanosilver, and carbon nanotube mixtures on the structure and properties of polyacrylonitrile composite nanofiber, J. Compos. Mater. 50, 2073–2086. https://doi. org/10.1177/0021998315601891.
  • 52. Brar AS, Kaur J. 2005. 2D NMR studies of acrylonitrile–methyl acrylate copolymers, Eur. Polym. J. 4, 2278–2289. https://doi.org/10.1016/j.eurpolymj.2005.05.003.
  • 53. Ballard N, Asua JM. 2018. Radical polymerization of acrylic monomers: An overview, Prog. Polym. Sci. 79, 40–60. https://doi.org/10.1016/j.progpolymsci.2017.11.002.
  • 54. Wang H, Niu H, Wang H, Wang W, Jin X, Wang H, Zhou H, Lin T. 2021. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance, J. Power Sources Adv. 482, 228986. https://doi.org/10.1016/ j.jpowsour.2020.228986.
  • 55. Yang E, Qin X, Wang S. 2008. Electrospinned crosslinked polyvinyl alcohol membrane, Mater. Lett. 62, 3555-3557. https://doi.org/ 10.1016/j.matlet.2008.03.049
  • 56. Uyar T, Balan A, Toppare L, Besenbacher, F. 2009. Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers, Polymer, 50, 475–480. https://doi.org/10.1016/ j.polymer.2008.11.021.
  • 57. Yunus H, Sabır EC, İçoğlu Hİ, Yıldırım B, Gülnaz O, Topalbekiroğlu M. 2023. Characterization and Antibacterial Activity of Electrospinned Polyethylene oxide/Chitosan Nanofibers. Tekstil ve Konfeksiyon. 33(1) 1-8.
  • 58. İçoğlu Hİ, Oğulata RT. 2017. Effect of ambient parameters on morphology of electrospinned poly (trimethylene terephthalate) (ptt) fibers. Tekstil ve Konfeksiyon. 27(3): 215-223.
There are 58 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Timur Paçacı 0009-0001-4378-8200

Cemil Alkan 0000-0002-1509-4789

Orhan Uzun 0000-0001-7586-9075

Early Pub Date March 29, 2025
Publication Date
Submission Date April 13, 2023
Acceptance Date September 9, 2024
Published in Issue Year 2025 Volume: 35 Issue: 1

Cite

APA Paçacı, T., Alkan, C., & Uzun, O. (2025). PEG2000@PAN Composite Electrospun Nanostructures as Shape Stabilised Phase Change Materials for Thermal Energy Storage. Textile and Apparel, 35(1), 11-18.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.