Research Article
BibTex RIS Cite

Development of Multifunctional Textile Surface with Electromagnetic Shielding Effectiveness, Water and Oil Repellency and Flame Retardancy Features

Year 2025, Volume: 35 Issue: 1, 19 - 30

Abstract

In this study, multifunctional fabric surface with electromagnetic shielding effectiveness, water/oil repellency and flame retardancy features were produced. First of all, in order to make fabrics electromagnetic shielding effectiveness feature, conductive yarn containing 60 micron steel wire was used. Then, woven fabrics with different densities were produced by using conductive yarns on the weft and warp directions, also water/oil repellent and flame retardant chemicals were added to fabrics than. After fabric production, Electromagnetic Shielding Effectiveness (EMSE) values of fabrics were measured between 15 MHz to 3000 MHz frequencies according to ASTM D4935 standard. Fluorocarbon chemical was used in order to make some fabrics water and oil repellent. Repellency of fabrics was evaluated according to AATCC 193 and 118 standards. Halogen based FR chemical was used in order to make some fabrics flame retardant. FR tests were performed according to BS 5852 standard. In addition of these tests, physical properties of the fabrics were also evaluated. According to all the test results, it has been seen that the fabrics can be used in various areas.

References

  • 1. K. B. Cheng, S. Ramakrishna, and K. C. Lee, “Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites,” Compos. Part A Appl. Sci. Manuf., vol. 31, no. 10, pp. 1039–1045, Oct. 2000.
  • 2. A. Das, V. K. Kothari, A. Kothari, and A. Kumar, “Effect of various parameters on electromagnetic shielding effectiveness of textile fabrics,” IJFTR Vol.34(2) [June 2009], vol. 34, pp. 144–148, 2009.
  • 3. R. Perumalraj and B. S. Dasaradan, “Electromagnetic shielding effectiveness of doubled copper-cotton yarn woven materials,” Fibres Text. East. Eur., no. Nr 3 (80), pp. 74--80, 2010.
  • 4. D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon N. Y., vol. 39, no. 2, pp. 279–285, Feb. 2001.
  • 5. E. Sancak et al., “PA6/Silver Blends: Investigation Of Mechanical And Electromagnetic Shielding Behaviour Of Electrospun Nanofibers,” Text. Appar., vol. 28, no. 3, pp. 229–235, Oct. 2018.
  • 6. F. Z. Engin and I. Usta, “Electromagnetic shielding effectiveness of polyester fabrics with polyaniline deposition,” https://doi.org/10.1177/0040517513515316, vol. 84, no. 9, pp. 903–912, Jan. 2014.
  • 7. D. D. Soyaslan, “Design And Manufacturing Of Fabric Reinforced Electromagnetic Shielding Composite Materials,” Tekstil ve Konfeksiyon., vol. 30, no. 2, pp. 92–98, Jun. 2020.
  • 8. J. F. B. Bolte and M. J. M. Pruppers, “Electromagnetic fields in the working environment,” Oct. 2017.
  • 9. F. Ceken, G. Pamuk, O. Kayacan, A. Ozkurt, and Ş. S. Ugurlu, “Electromagnetic shielding properties of plain knitted fabrics containing conductive yarns,” J. Eng. Fiber. Fabr., vol. 7, no. 4, pp. 81–87, Dec. 2012.
  • 10. J. Yun, J. S. Im, Y. S. Lee, and H. Il Kim, “Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules,” Eur. Polym. J., vol. 46, no. 5, pp. 900–909, May 2010.
  • 11. H. G. Ortlek, T. Alpyildiz, and G. Kilic, “Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method,” Text. Res. J., vol. 83, no. 1, pp. 90–99, 2013.
  • 12. V. Šafářová, M. Tunák, and J. Militký, “Prediction of hybrid woven fabric electromagnetic shielding effectiveness,” https://doi.org/ 10.1177/0040517514555802, vol. 85, no. 7, pp. 673–686, Nov. 2014.
  • 13. K. B. Cheng, S. Ramakrishna, and K. C. Lee, “Development of Conductive Knitted- Fabric-Reinforced Thermoplastic Composites for Electromagnetic Shielding Applications,” http://dx.doi.org/10.1106/MHKX-74A6-PKEM-J7PL, vol. 13, no. 5, pp. 378–399, Sep. 2000.
  • 14. S. Zhang and A. R. Horrocks, “A review of flame retardant polypropylene fibres,” Prog. Polym. Sci., vol. 28, no. 11, pp. 1517–1538, Nov. 2003.
  • 15. N. Kertmen, E. S. Dalbaşı, A. Körlü, A. T. Özgüney, and S. Yapar, “A Study on Coating with Nanoclay on the Production of Flame Retardant Cotton Fabrics,” Tekstil ve Konfeksiyon vol. 30, no. 4, 2020.
  • 16. D. Tama, A. Catarino, and M. J. Abreu, “Evaluating the Effect of Water-Repellent Finishing on Thermal Insulation Properties of Rowing Shirts Using a Thermal Manikin,” Tekstil ve Konfeksiyon, vol. 29, no. 4, p. 2019.
  • 17. B. Garip, A. Yüksek, S. Ünal, and A. Bedeloğlu, “Improving the Water Repellency of Polyester Filament Yarn and Fabrics,” Tekstil ve Konfeksiyon., vol. 33, no. 2, pp. 161–168, Jun. 2023.
  • 18. A. K. Jain, “Development of multifunctional cotton using fluorocarbon resin,” Int. Dye., no. 3, pp. 40–45, Jul. 2018.
  • 19. W. D. Schindler and P. J. Hauser, “Chemical Finishing of Textiles,” Chem. Finish. Text., pp. 1–213, Aug. 2004.
  • 20. J. Song and O. J. Rojas, “Approaching super-hydrophobicity from cellulosic materials: A review,” Nord. Pulp Pap. Res. J., vol. 28, no. 2, pp. 216–238, May 2013.
  • 21. Y. Küçükbağrıaçık and E. Ö. Büyükatalay, “Yeni Nesil Cep Telefonu Frekansları ve Biyolojik Etkileri,” Genel Tıp Derg., vol. 31, no. 3, pp. 309–312, Sep. 2021.
  • 22. ASTM D4935-10. (2010). Standard test method for measuring the electromagnetic shielding effectiveness of planar materials. Pennsylvania, United States of America and ASTM International.
  • 23. V. Šafářová, M. Tunák, M. Truhlář, and J. Militký, “A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles, ”http://dx.doi.org/10. 1177/0040517515581587, vol. 86, no. 1, pp. 44–56, Apr. 2015
  • 24. Standard Specified Requirements of Electromagnetic Shielding Textiles. FTTS-FA-003 2005.
  • 25. ISO 13934-1:2013 Textiles — Tensile properties of fabrics — Part 1: Determination of maximum force and elongation at maximum force using the strip method
  • 26. ISO 12947-2:2016 Textiles — Determination of the abrasion resistance of fabrics by the Martindale method — Part 2: Determination of specimen breakdown
  • 27. ISO 12945-2:2020 Textiles — Determination of fabric propensity to surface pilling, fuzzing or matting — Part 2: Modified Martindale method
  • 28. AATCC Test Method 193-2005 Aqueous Liquid Repellency: Water/Alcohol Solution Resistance Test
  • 29. AATCC Test Method 118-2002 Oil Repellency: Hydrocarbon Resistance Test
  • 30. BS 5852:2006 Methods of test for assessment of the ignitability of upholstered seating by smouldering and flaming ignition sources
Year 2025, Volume: 35 Issue: 1, 19 - 30

Abstract

References

  • 1. K. B. Cheng, S. Ramakrishna, and K. C. Lee, “Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites,” Compos. Part A Appl. Sci. Manuf., vol. 31, no. 10, pp. 1039–1045, Oct. 2000.
  • 2. A. Das, V. K. Kothari, A. Kothari, and A. Kumar, “Effect of various parameters on electromagnetic shielding effectiveness of textile fabrics,” IJFTR Vol.34(2) [June 2009], vol. 34, pp. 144–148, 2009.
  • 3. R. Perumalraj and B. S. Dasaradan, “Electromagnetic shielding effectiveness of doubled copper-cotton yarn woven materials,” Fibres Text. East. Eur., no. Nr 3 (80), pp. 74--80, 2010.
  • 4. D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon N. Y., vol. 39, no. 2, pp. 279–285, Feb. 2001.
  • 5. E. Sancak et al., “PA6/Silver Blends: Investigation Of Mechanical And Electromagnetic Shielding Behaviour Of Electrospun Nanofibers,” Text. Appar., vol. 28, no. 3, pp. 229–235, Oct. 2018.
  • 6. F. Z. Engin and I. Usta, “Electromagnetic shielding effectiveness of polyester fabrics with polyaniline deposition,” https://doi.org/10.1177/0040517513515316, vol. 84, no. 9, pp. 903–912, Jan. 2014.
  • 7. D. D. Soyaslan, “Design And Manufacturing Of Fabric Reinforced Electromagnetic Shielding Composite Materials,” Tekstil ve Konfeksiyon., vol. 30, no. 2, pp. 92–98, Jun. 2020.
  • 8. J. F. B. Bolte and M. J. M. Pruppers, “Electromagnetic fields in the working environment,” Oct. 2017.
  • 9. F. Ceken, G. Pamuk, O. Kayacan, A. Ozkurt, and Ş. S. Ugurlu, “Electromagnetic shielding properties of plain knitted fabrics containing conductive yarns,” J. Eng. Fiber. Fabr., vol. 7, no. 4, pp. 81–87, Dec. 2012.
  • 10. J. Yun, J. S. Im, Y. S. Lee, and H. Il Kim, “Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules,” Eur. Polym. J., vol. 46, no. 5, pp. 900–909, May 2010.
  • 11. H. G. Ortlek, T. Alpyildiz, and G. Kilic, “Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method,” Text. Res. J., vol. 83, no. 1, pp. 90–99, 2013.
  • 12. V. Šafářová, M. Tunák, and J. Militký, “Prediction of hybrid woven fabric electromagnetic shielding effectiveness,” https://doi.org/ 10.1177/0040517514555802, vol. 85, no. 7, pp. 673–686, Nov. 2014.
  • 13. K. B. Cheng, S. Ramakrishna, and K. C. Lee, “Development of Conductive Knitted- Fabric-Reinforced Thermoplastic Composites for Electromagnetic Shielding Applications,” http://dx.doi.org/10.1106/MHKX-74A6-PKEM-J7PL, vol. 13, no. 5, pp. 378–399, Sep. 2000.
  • 14. S. Zhang and A. R. Horrocks, “A review of flame retardant polypropylene fibres,” Prog. Polym. Sci., vol. 28, no. 11, pp. 1517–1538, Nov. 2003.
  • 15. N. Kertmen, E. S. Dalbaşı, A. Körlü, A. T. Özgüney, and S. Yapar, “A Study on Coating with Nanoclay on the Production of Flame Retardant Cotton Fabrics,” Tekstil ve Konfeksiyon vol. 30, no. 4, 2020.
  • 16. D. Tama, A. Catarino, and M. J. Abreu, “Evaluating the Effect of Water-Repellent Finishing on Thermal Insulation Properties of Rowing Shirts Using a Thermal Manikin,” Tekstil ve Konfeksiyon, vol. 29, no. 4, p. 2019.
  • 17. B. Garip, A. Yüksek, S. Ünal, and A. Bedeloğlu, “Improving the Water Repellency of Polyester Filament Yarn and Fabrics,” Tekstil ve Konfeksiyon., vol. 33, no. 2, pp. 161–168, Jun. 2023.
  • 18. A. K. Jain, “Development of multifunctional cotton using fluorocarbon resin,” Int. Dye., no. 3, pp. 40–45, Jul. 2018.
  • 19. W. D. Schindler and P. J. Hauser, “Chemical Finishing of Textiles,” Chem. Finish. Text., pp. 1–213, Aug. 2004.
  • 20. J. Song and O. J. Rojas, “Approaching super-hydrophobicity from cellulosic materials: A review,” Nord. Pulp Pap. Res. J., vol. 28, no. 2, pp. 216–238, May 2013.
  • 21. Y. Küçükbağrıaçık and E. Ö. Büyükatalay, “Yeni Nesil Cep Telefonu Frekansları ve Biyolojik Etkileri,” Genel Tıp Derg., vol. 31, no. 3, pp. 309–312, Sep. 2021.
  • 22. ASTM D4935-10. (2010). Standard test method for measuring the electromagnetic shielding effectiveness of planar materials. Pennsylvania, United States of America and ASTM International.
  • 23. V. Šafářová, M. Tunák, M. Truhlář, and J. Militký, “A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles, ”http://dx.doi.org/10. 1177/0040517515581587, vol. 86, no. 1, pp. 44–56, Apr. 2015
  • 24. Standard Specified Requirements of Electromagnetic Shielding Textiles. FTTS-FA-003 2005.
  • 25. ISO 13934-1:2013 Textiles — Tensile properties of fabrics — Part 1: Determination of maximum force and elongation at maximum force using the strip method
  • 26. ISO 12947-2:2016 Textiles — Determination of the abrasion resistance of fabrics by the Martindale method — Part 2: Determination of specimen breakdown
  • 27. ISO 12945-2:2020 Textiles — Determination of fabric propensity to surface pilling, fuzzing or matting — Part 2: Modified Martindale method
  • 28. AATCC Test Method 193-2005 Aqueous Liquid Repellency: Water/Alcohol Solution Resistance Test
  • 29. AATCC Test Method 118-2002 Oil Repellency: Hydrocarbon Resistance Test
  • 30. BS 5852:2006 Methods of test for assessment of the ignitability of upholstered seating by smouldering and flaming ignition sources
There are 30 citations in total.

Details

Primary Language English
Subjects Textile Technology
Journal Section Articles
Authors

Abdulkadir Yağız 0000-0003-1081-078X

İsmail Usta 0000-0002-0869-5439

Early Pub Date March 29, 2025
Publication Date
Submission Date November 12, 2023
Acceptance Date October 31, 2024
Published in Issue Year 2025 Volume: 35 Issue: 1

Cite

APA Yağız, A., & Usta, İ. (2025). Development of Multifunctional Textile Surface with Electromagnetic Shielding Effectiveness, Water and Oil Repellency and Flame Retardancy Features. Textile and Apparel, 35(1), 19-30.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.