Research Article
BibTex RIS Cite

An Integrated Sustainable Multi-Objective Model and an Application in Turkish Textile Industry

Year 2025, Volume: 35 Issue: 3, 210 - 227

Abstract

In today's market, companies frequently resort to outsourcing to maintain their market position and gain a competitive edge. This approach significantly increases the number of stakeholders, i.e., suppliers, subcontractors and third-party reverse logistics partners (3PRLPs) within the supply chain. Achieving effective sustainability strategies across the supply chain relies on fostering trust and collaboration among these stakeholders. This study aims to develop a closed-loop, complex supply chain network that integrates strategic and tactical decisions—including partner selection, order allocation, aggregate production planning (APP), and network flow optimization—to meet the expectations of both internal and external stakeholders while achieving the three fundamental objectives of sustainability: economic, environmental, and social. To illustrate the proposed model, a real-life application of a 100% cotton T-shirt supply chain in the Turkish textile industry is presented. The proposed model is solved using the augmented epsilon constraint method, and the results are compared.

References

  • 1. Arsu, T., & Ayçin, E. (2021). Üçüncü parti tersine lojistik servis sağlayıcısı seçimi kriterlerinin bulanık SWARA yöntemi ile değerlendirilmesi. Yaşar Üniversitesi E-Dergisi, 16(63), 1282-1300.
  • 2. Kannan, D. (2018). Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process. International Journal of Production Economics, 195, 391-418.
  • 3. Ozfirat, P. M. (2020). A fuzzy event tree methodology modified to select and evaluate suppliers. South African Journal of Industrial Engineering, 31(1), 35-46.
  • 4. Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2018). Sustainable supply chains: An integrated modeling approach under uncertainty. Omega, 77, 32-57.
  • 5. Luo, Y., Zhou, M., & Caudill, R. J. (2001). An integrated e-supply chain model for agile and environmentally conscious manufacturing. IEEE/ASME Transactions On Mechatronics, 6(4), 377-386.
  • 6. Tsai, W. H., & Hung, S. J. (2009). A fuzzy goal programming approach for green supply chain optimisation under activity-based costing and performance evaluation with a value-chain structure. International Journal of Production Research, 47(18), 4991-5017.
  • 7. Shaw, K., Shankar, R., Yadav, S. S., & Thakur, L. S. (2012). Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain. Expert systems with applications, 39(9),
  • 8. Kannan, D., Khodaverdi, R., Olfat, L., Jafarian, A., & Diabat, A. (2013). Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. Journal of Cleaner production, 47, 355-367.
  • 9. Bakeshlou, E. A., Khamseh, A. A., Asl, M. A. G., Sadeghi, J., & Abbaszadeh, M. (2017). Evaluating a green supplier selection problem using a hybrid MODM algorithm. Journal of Intelligent Manufacturing, 28(4), 913-927.
  • 10. Jakhar, S. K. (2015). Performance evaluation and a flow allocation decision model for a sustainable supply chain of an apparel industry. Journal of Cleaner Production, 87, 391-413.
  • 11. Gören, H. G. (2018). A decision framework for sustainable supplier selection and order allocation with lost sales. Journal of Cleaner Production, 183, 1156-1169.
  • 12. Almasi, M., Khoshfetrat, S., & Galankashi, M. R. (2019). Sustainable supplier selection and order allocation under risk and inflation condition. IEEE Transactions on Engineering Management, 68(3), 823-837.
  • 13. Liaqait, R. A., Warsi, S. S., Zahid, T., Ghafoor, U., Ahmad, M. S., & Selvaraj, J. (2021). A Decision Framework for Solar PV Panels Supply Chain in Context of Sustainable Supplier Selection and Order Allocation. Sustainability, 13(23), 13216.
  • 14. Naqvi, M. A., & Amin, S. H. (2021). Supplier selection and order allocation: a literature review. Journal of Data, Information and Management, 3(2), 125-139.
  • 15. Sodenkamp, M. A., Tavana, M., & Di Caprio, D. (2016). Modeling synergies in multi-criteria supplier selection and order allocation: An application to commodity trading. European Journal of Operational Research, 254(3), 859-874.
  • 16. Hamdan, S., & Cheaitou, A. (2017). Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach. Computers & Operations Research, 81, 282-304.
  • 17. Hashemzahi, P., Azadnia, A., Galankashi, M. R., Helmi, S. A., & Rafiei, F. M. (2020). Green supplier selection and order allocation: a nonlinear stochastic model. International Journal of Value Chain Management, 11(2), 111-138.
  • 18. Govindan, K., Mina, H., Esmaeili, A., & Gholami-Zanjani, S. M. (2020). An integrated hybrid approach for circular supplier selection and closed loop supply chain network design under uncertainty. Journal of Cleaner Production, 242, 118317.
  • 19. Ghadimi, P., Toosi, F. G., & Heavey, C. (2018). A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain. European Journal of Operational Research, 269(1), 286-301.
  • 20. Kellner, F., & Utz, S. (2019). Sustainability in supplier selection and order allocation: Combining integer variables with Markowitz portfolio theory. Journal of cleaner production, 214, 462-474.
  • 21. Baykasoglu, A., (2001). MOAPPS 1.0: aggregate production planning using the multiple-objective tabu search. International Journal of Production Research, 39(16), 3685-3702.
  • 22. Masud, A. S., & Hwang, C. L. (1980). An aggregate production planning model and application of three multiple objective decision methods. International Journal of Production Research, 18(6), 741-752.
  • 23. Mirzapour Al-E-Hashem, S. M. J., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International journal of Production Economics, 134(1), 28-42.
  • 24. Cárdenas-Barrón, L. E., González-Velarde, J. L., & Treviño-Garza, G. (2015). A new approach to solve the multi-product multi-period inventory lot sizing problem with supplier selection problem. Computers & Operations Research, 64, 225-232.
  • 25. Díaz-Madroñero, M., Mula, J., & Peidro, D. (2017). A mathematical programming model for integrating production and procurement transport decisions. Applied Mathematical Modelling, 52, 527-543.
  • 26. Darvishi, F., Yaghin, R. G., & Sadeghi, A. (2020). Integrated fabric procurement and multi-site apparel production planning with cross-docking: A hybrid fuzzy-robust stochastic programming approach. Applied Soft Computing, 92, 106267.
  • 27. Rasmi, S. A. B., Kazan, C., & Türkay, M. (2019). A multi-criteria decision analysis to include environmental, social, and cultural issues in the sustainable aggregate production plans. Computers & Industrial Engineering, 132, 348-360.
  • 28. Entezaminia, A., Heydari, M., & Rahmani, D. (2016). A multi-objective model for multi-product multi-site aggregate production planning in a green supply chain: Considering collection and recycling centers. Journal of Manufacturing Systems, 40, 63-75.
  • 29. Tirkolaee, E. B., Aydin, N. S., & Mahdavi, I. (2023). A bi-level decision-making system to optimize a robust-resilient-sustainable aggregate production planning problem. Expert Systems with Applications, 228, 120476.
  • 30. Boonsothonsatit, K., Kara, S., Ibbotson, S., & Kayis, B. (2015). Development of a Generic decision support system based on multi-Objective Optimisation for Green supply chain network design (GOOG). Journal of Manufacturing Technology Management, 26(7), 1069-1084.
  • 31. Miranda-Ackerman, M. A., Azzaro-Pantel, C., Aguilar-Lasserre, A. A., Bueno-Solano, A., & Arredondo-Soto, K. C. (2019). Green supplier selection in the agro-food industry with contract farming: a multi-objective optimization approach. Sustainability, 11(24), 7017.
  • 32. Mohammadi, M., & Nikzad, A. (2022). Sustainable and reliable closed-loop supply chain network design during pandemic outbreaks and disruptions. Operations Management Research, 1-23.
  • 33. Mohammed, A., Harris, I., & Govindan, K. (2019). A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation. International Journal of Production Economics, 217, 171-184.
  • 34. Mohammed, A. (2020). Towards a sustainable assessment of suppliers: an integrated fuzzy TOPSIS-possibilistic multi-objective approach. Annals of Operations Research, 293(2), 639-668.
  • 35. Arabsheybani, A., Paydar, M. M., & Safaei, A. S. (2020). Sustainable supplier selection and order allocation applying metaheuristic algorithms. International Journal of Supply and Operations Management, 7(2), 164-177.
  • 36. UNEP, 2009. Guidelines For Social Life Cycle Assessment of Products, 2009. United Nations Environment Programme (UNEP).
  • 37. TURKSTAT. (2024, Dec 27). Gelir dağılımı istatistikleri, 2024 (Publication No. 53712). Turkish Statistical Institute. Retrieved January 29, 2025, from https://data.tuik.gov.tr/Bulten/Index?p=Gelir-Dagilimi-Istatistikleri-2024-53712
  • 38. Socio-Economic Development Ranking Research (SEGE). (2022). 2022 İlçe SEGE. Ministry of Industry and Technology. https://www.sanayi.gov.tr/merkez-birimi/b94224510b7b/sege
  • 39. Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), 455-465.
  • 40. Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, 1-126.
  • 41. UNEP, 2020. Guidelines for Social Life Cycle Assessment of Products and Organizations 2020. Benoît Norris, C., Traverso, M., Neugebauer, S., Ekener, E., Schaubroeck, T., Russo Garrido, S., Berger, M., Valdivia, S., Lehmann, A., Finkbeiner, M., Arcese, G. (eds.). United Nations Environment Programme (UNEP).
  • 42. Norris, C. B. (2012). Social life cycle assessment: a technique providing a new wealth of information to inform sustainability‐related decision making. Life cycle assessment handbook: A guide for environmentally sustainable products, 433-451.
  • 43. Goedkoop, M.J., Indrane, D.., de Beer, I.., 2018. Handbook for Product Social Impact Assessment-2018. Amersfoort.
  • 44. Esteve-Turrillas, F. A., & de La Guardia, M. (2017). Environmental impact of Recover cotton in textile industry. Resources, conservation and recycling, 116, 107-115.
  • 45. Altun, Ş. (2016). Tekstil üretim ve kullanım atıklarının, geri kazanımı, çevresel ve ekonomik etkileri (Uşak Ticaret ve Sanayi Odası Raporu). Uşak Ticaret ve Sanayi Odası.
  • 46. Türemen, M., Demir, A., & Özdoğan, E. (2019). Tekstil endüstrisi için geri dönüşüm ve önemi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 805-809.
  • 47. Béchir, W., Béchir, A., & Mohamed, B. H. (2018). Industrial cotton waste: recycling, reclaimed fiber behavior and quality prediction of its blend. Tekstil ve Konfeksiyon, 28(1), 14-20.
  • 48. Sipahi, İ. (2021). Transportation and recycling effects on the household textile waste of Eskişehir using LCA (Master’s thesis). Middle East Technical University, Graduate School of Natural and Applied Sciences. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi (Accession number: 685207)
  • 49. Khan, E. A. N., Begum, M. S., Rakib, M. M. A., Ali, M. A., Ara, Z. A., & Ashadujjaman, M. M. (2018). Lifecycle Analysis (LCA) of a White Cotton T-shirt and Investigation of Sustainability Hot Spots: A Case Study. London Journal of Research in Science: Natural and Formal, 18(3), 21-31.
  • 50. Singh, R. K., & Gupta, U. (2018). Social life cycle assessment in Indian steel sector: a case study. The International Journal of Life Cycle Assessment, 23, 921-939.
There are 50 citations in total.

Details

Primary Language English
Subjects Planning Techniques
Journal Section Articles
Authors

Tuğçe Dabanlı Kurt 0000-0002-7837-2280

Derya Eren Akyol 0000-0003-2712-5498

Early Pub Date October 1, 2025
Publication Date October 21, 2025
Submission Date February 18, 2025
Acceptance Date April 18, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

APA Dabanlı Kurt, T., & Eren Akyol, D. (2025). An Integrated Sustainable Multi-Objective Model and an Application in Turkish Textile Industry. Textile and Apparel, 35(3), 210-227. https://doi.org/10.32710/tekstilvekonfeksiyon.1642152

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.