Research Article
BibTex RIS Cite

Part 1: Cationization of Cotton Terry Towel Fabrics by Exhaustion Method; Labscale and Commercial Scale Trials

Year 2025, Volume: 35 Issue: 3, 244 - 262
https://doi.org/10.32710/tekstilvekonfeksiyon.1671647

Abstract

The incompatibility of cotton fibres with numerous dyestuffs can be addressed through the utilisation of considerable quantities of electrolytes. Nevertheless, the extensive utilisation of electrolytes during reactive dyeing inevitably results in the formation of a significant volume of wastewater. To address this challenge, cotton is cationized with cationic agents, thereby enhancing its dyeability with anionic dyestuffs. This study was derived from the findings of a doctoral thesis conducted as a result of a collaborative project between Pamukkale University and Ozanteks Textile Company, a prominent towel and bathrobe manufacturer in Turkey. This research paper is a two-part study. In the initial section of this paper, 100% cotton terry towel fabrics were subjected to cationization procedures during and after the bleaching process in a laboratory setting, utilising six distinct commercial cationization agents. Subsequently, the cationized cotton terry towel fabrics were subjected to dyeing processes, namely salt-free reactive dyeing, conventional reactive dyeing, and acid dyeing. The CIELAB values, rubbing and washing fastness, and colour strength (K/S) values of the cotton terry towel fabrics were compared. Subsequently, a decision analysis study (analytical hierarchical process, AHP) was conducted to identify the optimal cationization agent and processes for big commercial-scale applications. The criteria included color strength, color fastness, and cationic agent cost. In light of the findings of the AHP studies, CA1 coded cationization agent (based on polyammonium compounds) was identified as the optimal cationic agent for utilisation in commercial dyeing, the specifics of which will be outlined in the subsequent paper. Moreover, the findings indicated that cationization should be carried out after bleaching. The second part of the paper presents the results of big commercial scale cationization, reactive and acid dyeings carried out using the selected cationization agent and processes. The influence of these processes on the fastness properties (wash, perspiration and water fastness) and physical characteristics (tensile strength and water absorption) of cotton terry towel fabrics was evaluated by statistical comparison. The chemical oxygen demand, ammonium nitrogen, total chemical, energy, and water consumption of the commercially available dyes were also compared to assess their environmental impact.

Supporting Institution

TUBITAK

Project Number

119C070

Thanks

The authors are grateful to the Ozanteks Tekstil San ve Tic A.S, Turkey for providing the laboratory and commercial dyeing and textile testing facilities. This study was supported by TUBITAK under project number 119C070. The authors would like to thenk TUBITAK for their valuable support.

References

  • 1. Oktav M., Dayıoğlu H. 2009. Pamuk Liflerinin İyonik Modifikasyon Yardımıyla Boyanabilirlik Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(3)
  • 2. Özdemir H. 2017. Katyonize ve Normal Pamuğun Asit Boyarmaddeler İle Boyanması Ve Boyama Sonuçlarının Karşılaştırılması, Uçtek 2017, 80, Adana, Turkey
  • 3. Uğur S. S., Sarıışık M., Aktaş A. H. 2011. Katyonizasyon İşleminin Pamuklu Kumaşların Bazı Özelliklerine Etkisi. Tekstil ve Mühendis, 18(81)
  • 4. Burkinshaw S. M., Gotsopoulos A. 1999. Pretreatment of cotton to enhance its dyeability; Part 2. Direct dyes. Dyes and Pigments, 42(2), 179-195
  • 5. Hashem M., Refaie R., Hebeish A. 2005. A Crosslinking of partially carboxymethylated cotton fabric via cationization, Journal of Cleaner Production, 13(9), 947-954, Retrieved from https://doi.org/10.1016/j.jclepro.2004.05.002
  • 6. Seventekin N., Gülümser T. 1995. Katyonikleştirilmiş Pamuklu Kumaşların Substantif Bir Boyarmadde ile Boyanması, Tesktil ve Konfeksiyon, 5-4, 343-351
  • 7. Haroun A. A., Mansour H. F. 2007. Effect of cationisation on reactive printing of leather and wool. Dyes and Pigments, 72(1), 80-87 Retrieved from https://doi.org/10.1016/j.dyepig.2005.07.019
  • 8. Kamel M. M., El Zawahry M. M., Ahmed N. S. E., Abdelghaffar F. 2009. Ultrasonic dyeing of cationized cotton fabric with natural dye. Part 1: Cationization of cotton using Solfix E”. Ultrasonics Sonochemistry, 16(2), 243-249, Retrieved from https://doi.org/10.1016/j.ultsonch.2008.08.001
  • 9. Kanık M., Hauser P. J. 2004. Printing cationized cotton with direct dyes. Textile research journal, 74(1), 43-50, Retrieved from https://doi.org/10.1177/004051750407400108
  • 10. Wu M., Kuga S. 2006. Cationization of cellulose fabrics by polyallylamine binding. Journal of applied polymer science, 100(2), 1668-1672, Retrieved from https://doi.org/10.1002/app.22895
  • 11. Onar N. 2006. Katyonik Pamuk Eldesi Ve Uygulamaları. Tekstil ve Mühendis, 13(61)
  • 12. Özdemir H. 2014. Katyonize ve normal pamuğun çeşitli boyarmaddeler ile boyama sonuçlarının karşılaştırılması, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 1(1), 14-22
  • 13. Dilsiz Y. F. 2016. Pamuğa Kimyasal Modifikasyon Uygulayarak Multıcolor Efektine Ve Antibakteriyellik Özelliğine Sahip Fonksiyonel Gömleklik Kumaş Eldesi (Master's thesis), Namık Kemal Üniversitesi, Türkiye
  • 14. Kalkanlı E., Ünal B. Z. 2019. Katyonizasyon İşleminin Havlu Kumaş Ön Terbiyesinde Kullanılabilirliğinin ve Ürün Özelliklerine Etkisinin Araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(4), 39-48
  • 15. Čorak I., Brlek I., Sutlović A., & Tarbuk A. 2022. Natural dyeing of modified cotton fabric with cochineal dye. Molecules, 27(3), 1100. Retrieved from https://doi.org/10.3390/molecules27031100
  • 16. Correia J., Rainert K. T., Oliveira F. R., Valle R. D. C. S. C., Valle J. A. B. 2020. Cationization of cotton fiber: an integrated view of cationic agents, processes variables, properties, market and future prospects. Cellulose, 1-24, Retrieved from https://doi.org/10.1007/s10570-020-03361-w
  • 17. Bozacı E. 2007. Yeni Tip Kimyasal Maddelerin Kullanımı ile Pamuk Liflerinin Katyonikleştirilerek Boyanma Özelliklerinin Geliştirilmesi (Master's thesis), Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir
  • 18. Lewis D. M., Lei X. P. 1991. New Methods For Improving The Dyeability of Cellulose Fibres with Reactive Dyes. JSDC, 107 March: 102-109
  • 19. Erdas Y., Phillips D.A.S., Scotney J., Taylor J.A., Gordon R. 2003. Pretreatment of Cotton with Polymeric Cationic Agents Before Dyeing with Reactive Dye. Part 1: Quantitative Estimation of Selected Cationic Agents Using Congo Red, Color Technol, 119: 307-309, Retrieved from https://doi.org/10.1111/j.1478-4408.2003.tb00189.x
  • 20. Teng X., Ma W., Zhang S. 2010. Application of Tertiary Amine Cationic Polyacrylamide with High Cationic Degree in Salt-free Dyeing of Reactive Dyes”. Chinese Journal of Chemical Engineering, 18 (6): 1023-1028, Retrieved from https://doi.org/10.1016/s1004-9541(09)60163-4
  • 21. Teng X., Zhang S., Ma W., 2011. Application of A Hydrolyzable Cationic Agent Poly (acryloxyethyl trimethylammonium chloride), inSalt-Free Reactive Dyeing for Good Dyeing Properties. Journal of Applied Polymer Science, 122: 2741-2748, Retrieved from https://doi.org/10.1002/app.34023
  • 22. Periyasamy A.P., Dhurai B., Thangamani K. 2011. Salt-Free Dyeing - A New Method of Dyeing on Lyocell/Cotton Blended Fabrics with Reactive Dyes, AUTEX Research Journal, March 11 (1): 14-17, Retrieved from https://doi.org/10.1515/aut-2011-110103
  • 23. Kazan C. S. 2015. Liflerin Kimyasal Modifikasyonu Yoluyla Poliester/Pamuk Karışımlarının Tek Banyoda Boyanabilirliğini Sağlayacak Yeni Bir Yöntem Geliştirilmesi (Master's thesis), Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Tekirdağ
  • 24. Hashem M., Hauser P., Smith B. 2003. Reaction efficiency for cellulose cationization using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride. Text Res J 73:1017–1023. Retrieved from https://doi.org/10.1177/004051750307301113
  • 25. Hauser P.J., Tabba A.H. 2001. Improving the environmental and economic aspects of cotton dyeing using a cationised cotton. Coloration Technology 117:282–288. Retrieved from https://doi.org/10.1111/j.1478-4408.2001.tb00076.x
  • 26. Hashem M. M. 2006. Development of a one‐stage process for pretreatment and cationisation of cotton fabric. Coloration Technology, 122(3), 135- 144. Retrieved from https://doi.org/10.1111/j.1478-4408.2006.00022.x
  • 27. Shateri Khalil-Abad M., Yazdanshenas M.E., Nateghi M.R. 2009. Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157. Retrieved from https://doi.org/10.1007/s10570-009-9351-8
  • 28. Wang L., Ma W., Zhang S., Teng X., & Yang J. 2009. Preparation of cationic cotton with two-bath pad-bake process and its application in salt-free dyeing. Carbohydrate Polymers, 78(3), 602-608.Retrieved from https://doi.org/10.1016/j.carbpol.2009.05.022
  • 29. Farouk A., Sharaf S., Abd El-Hady M.M. 2013. Preparation of multifunctional cationized cotton fabric based on TiO2 nanomaterials. Int J Biol Macromol 61:230–237. Retrieved from https://doi.org/10.1016/j.ijbiomac.2013.06.022
  • 30. Fu S., Hinks D., Hauser P., Ankeny M. 2013. High efficiency ultra-deep dyeing of cotton via mercerization and cationization. Cellulose 20:3101– 3110. Retrieved from https://doi.org/10.1007/s10570-013-0081-6
  • 31. Kamal Alebeid O., Zhao T. 2015. Anti-ultraviolet treatment by functionalizing cationized cotton with TiO2 nano-sol and reactive dye. Text Res J 85:449–457. Retrieved from https://doi.org/ 10.1177/0040517514549989
  • 32. Acharya S., Abidi N., Rajbhandari R., Meulewaeter F. 2014. Chemical cationization of cotton fabric for improved dye uptake. Cellulose 21:4693– 4706. Retrieved from https://doi.org/10.1007/ s10570-014-0457-2
  • 33. Farrell M.J., Ormond R.B., Gabler W.J. 2015. Quantitative analysis of trimethyl amine in cotton fabrics cationized with 3-chloro-2- hydroxypropyltrimethylammonium chloride. Cellulose 22:3435–3439. Retrieved from https://doi.org/10.1007/s10570-015-0692-1
  • 34. Arivithamani N., Giri Dev V.R. 2016. Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent. Carbohydr Polym 152:1–11. Retrieved from https://doi.org/10.1016/j.carbpol.2016.06.087
  • 35. Arivithamani N., Dev V.R.G. 2017. Cationization of cotton for industrial scale salt-free reactive dyeing of garments. Clean Technol Environ Policy 19:2317–2326. Retrieved from https://doi.org/ 10.1007/ s10098-017-1425-y
  • 36. Arivithamani N., Giri Dev V.R. 2017a. Sustainable bulk scale cationization of cotton hosiery fabrics for salt-free reactive dyeing process. J Clean Prod 149:1188–1199. Retrieved from https://doi.org/10.1016/j.jclepro.2017.02.162
  • 37. Arivithamani N., Giri Dev V.R. 2017b. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry. Carbohydr Polym 174:137–145. Retrieved from https://doi.org/10.1016/j.carbpol.2017.06.045
  • 38. Arivithamani N., Giri Dev V.R. 2018. Characterization and comparison of salt-free reactive dyed cationized cotton hosiery fabrics with that of conventional dyed cotton fabrics. J Clean Prod 183:579–589. Retrieved from https://doi.org/10.1016/J.JCLEPRO.2018.02.175
  • 39. Farrell M.J., Fu S., Ankeny M.A. 2017. Cationic cotton prepared with hydrophobic alkyl chlorohydrin quats: a new fiber with new properties. AATCC 2017—2017 AATCC international conference proceedings, pp 97–125
  • 40. Rehan M., Zaghloul S., Mahmoud F. A., Montaser A. S., & Hebeish A. 2017. Design of multi-functional cotton gauze with antimicrobial and drug delivery properties. Materials Science and Engineering: C, 80, 29-37. Retrieved from https://doi.org/10.1016/ j.msec.2017.05.093
  • 41. Nakpathom M., Somboon B., Narumol N., Mongkholrattanasit R. 2017. Dyeing of cationized cotton with natural colorant from purple corncob. J Nat Fibers. Retrieved from https://doi.org/10.1080/ 15440478.2017.1354742
  • 42. Rehman A., Ahmad A., Hameed A., Kiran S., Farooq T. 2021b. Green dyeing of modified cotton fabric with Acalypha wilkesiana leave extracts. Sustainable Chemistry and Pharmacy, 21, 100432. Retrieved from https://doi.org/10.1016/j.scp.2021.100432
  • 43. Rehman A., Irfan M., Hameed A., Saif M. J., Qayyum M. A., Farooq T. 2022. Chemical-free dyeing of cotton with functional natural dye: A pollution-free and cleaner production approach. Frontiers in Environmental Science, 10, 848245. Retrieved from https://doi.org/10.3389/fenvs.2022.848245
  • 44. Correia J., Oliveira F. R., de Cássia Siqueira Curto Valle R., & Valle J. A. B. 2021a. Preparation of cationic cotton through reaction with different polyelectrolytes. Cellulose, 28, 11679-11700. Retrieved from https://doi.org/10.1007/s10570-021-04260-4
  • 45. Correia J., Mathur K., Bourham M., Oliveira F. R., Siqueira Curto Valle R. D. C., Valle J. A. B., Seyam A. F. M. 2021. Surface functionalization of greige cotton knitted fabric through plasma and cationization for dyeing with reactive and acid dyes. Cellulose, 28(15), 9971-9990. Retrieved from https://doi.org/10.1007/s10570-021-04143-8
  • 46. Sutlović A., Glogar M. I., Čorak I., Tarbuk A. 2021. Trichromatic vat dyeing of cationized cotton. Materials, 14(19), 5731 Retrieved from https://doi.org/10.3390/ma14195731
  • 47. Zhai S., Li Y., Dong W., Zhao H., Ma K., Zhang H., Cai Z. 2022. Cationic cotton modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride for salt-free dyeing with high levelling performance. Cellulose, 1-14. Retrieved from https://doi.org/10.1007/s10570-021-04295-7
  • 48. Pruś S., Kulpiński P., Matyjas-Zgondek E., Wojciechowski K. 2022. Eco-friendly dyeing of cationised cotton with reactive dyes: mechanism of bonding reactive dyes with CHPTAC cationised cellulose. Cellulose, 29(7), 4167-4182. Retrieved from https://doi.org/10.1007/s10570-022-04521- w
  • 49. Hossain T., Das S. C., Akhtarujjaman M., Uddin M. A., Bedoura S. 2023. Eco-friendly dyeing of cotton fabric using used tea bag extracts: A comprehensive study on pH, fabric cationisation, and computational analysis. Current Research in Green and Sustainable Chemistry, 7, 100387. Retrieved from https://doi.org/10.1016/j.crgsc.2023.100387
  • 50. Setthayanond J., Netzer F., Seemork K., Suwanruji P., Bechtold T., Pham T., Manian A. P. 2023. Low-level cationisation of cotton opens a chemical saving route to salt free reactive dyeing. Cellulose, 30(7), 4697-4711. Retrieved from https://doi.org/10.1007/s10570-023-05136-5
  • 51. Zhang M., Zhang Y., Liu Y., Ren X., Huang T. S. 2021. Simultaneous low‐salt dyeing and anti‐bacterial finishing of cotton fabric with reactive dye and N‐halamine. Coloration Technology, 137(5), 475-483. Retrieved from https://doi.org/10.1111/cote.12542
  • 52. Ghosh J., Rupanty N. S. 2023. Study on a cationic agent-based salt-free reactive dyeing process for cotton knit fabric and comparison with a traditional dyeing process. Heliyon, 9(9). Retrieved from https://doi.org/10.1016/j.heliyon.2023.e19457
  • 53. Abdelileh M., Ben T.M., Moussa I., Meksi N. 2019. Pretreatment optimization process of cotton to overcome the limits of its dyeability with indigo carmine. Chem Ind Chem Eng Q25:277–288. Retrieved from https://doi.org/10.2298/CICEQ181115006A
  • 54. Helmy H.M., Hauser P., El-Shafei A. 2017. Influence of atmospheric plasma-induced graft polymerization of DADMAC into cotton on dyeing with acid dyes. J Text Inst 108:1871–1878. Retrieved from https://doi.org/10.1080/00405000.2017.1298206
  • 55. Jareansin S., Sukaam P., Kusuktham B. 2019. Preparation and characterization of modified cotton fabrics with responsive pH. Polym Bull 76:4507– 4520. Retrieved from https://doi.org/10.1007/ s00289-018-2603-8
  • 56. Abd El-Hady MM, Sharaf S, Farouk A (2020) Highly hydrophobic and UV protective properties of cotton fabric using layer by layer self-assembly technique. Cellulose 27:1099–1110. Retrieved from https://doi.org/10.1007/s10570-019-02815-0
  • 57. Dong W., Zhou M., Li Y., Zhai S., Jin K., Fan Z., & Cai Z. 2020. Low-salt dyeing of cotton fabric grafted with pH-responsive cationic polymer of polyelectrolyte 2-(N, N-dimethylamino) ethyl methacrylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 594, 124573. Retrieved from https://doi.org/10.1016/j.colsurfa.2020.124573
  • 58. Ma W., Wang T., Li H., Zhang S. 2015. Cotton fabric modification through ceric (IV) ion-initiated graft copolymerisation of 2- methacryloyloxyethyltrimethyl ammonium chloride to enhance the fixation of reactive dyes. Cellulose 22:4035–4047. Retrieved from https://doi.org/10.1007/s10570-015-0713-0
  • 59. Ma W., Du S., Yan S., Yu X., Zhang Z., & Zhang S. 2020. Salt-free dyeing of modified cotton through graft polymerization with highly enhanced dye fixation and good strength properties. Polymers, 12(2), 462.Retrieved from https://doi.org/10.3390/polym12020462
  • 60. Ma W., Meng M., Yan S., Zhang S. 2016. Salt-free reactive dyeing of betaine-modified cationic cotton fabrics with enhanced dye fixation. Chin J Chem Eng 24:175–179. Retrieved from https://doi.org/10.1016/J.CJCHE.2015.07.008
  • 61. Ma W., Shen K., Xiang N., Zhang S. 2017. Combinative scouring, bleaching, and cationization pretreatment of greige knitted cotton fabrics for facilely achieving salt-free reactive dyeing. Molecules 22:2235. Retrieved from https://doi.org/10.3390/molecules22122235
  • 62. Wu A., Ma W., Yang Z., Zhang S. 2022. Efficient cationization of cotton for salt-free dyeing by adjusting fiber crystallinity through alcohol-water- NaOH pretreatment. Polymers, 14(24), 5546. Retrieved from https://doi.org/10.3390/polym14245546
  • 63. Liu L., Yao J. 2011. Salt-free dyeability of thiourea grafted cotton fabric. Fibers Polym 12:42–49. Retrieved from https://doi.org/1 0.1007/ s12221- 011-0042-3
  • 64. Yu C., Liu Y., Lu Y., Tao K., Yi Z. 2021. A salt‐free pad‐irradiate‐pad‐steam reactive dyeing process for cotton fabric and the influence of cationising conditions on its coloration. Coloration Technology, 137(4), 399-406. Retrieved from https://doi.org/10.1111/cote.12537
  • 65. Oliveria F. R., De Oliveira D. A. J., Steffens F., do Nascimento J. H. O., e Silva K. K. O., & Souto A. P. 2017. Dyeing of cotton and polyester blended fabric previously cationized with synthetic and natural polyelectrolytes. Procedia engineering, 200, 309-316. Retrieved from https://doi.org/10.1016/j.proeng.2017.07.044
  • 66. Papapetros K., Sygellou L., Anastasopoulos C., Andrikopoulos K. S., Bokias G., Voyiatzis G. A. 2023. Spectroscopic study of the interaction of reactive dyes with polymeric cationic modifiers of cotton fabrics. Applied Sciences, 13(9), 5530. Retrieved from https://doi.org/10.3390/app13095530
  • 67. Burkinshaw S. M., Mignanelli M., Froehling P.E., Bide M.J. 2000. The Use of Dendrimers to Modify the Dyeing Behaviour of Reactive Dyes on Cotton. Dyes and Pigments, 47: 259-267
  • 68. Zhang F., Chen Y., Lin H., Lu Y., 2007. Synthesis of An Amino-terminated Hyperbranched Polymer and Its Application in Reactive Dyeing on Cotton As A Salt-Free Dyeing Auxiliary. Coloration Technology, 123(6): 51-357, Retrieved from https://doi.org/10.1111/j.1478- 4408.2007.00108.x
  • 69. Zhang F., Chen Y., Lin H., Wang H., Zhao B., 2008. “HBP-NH2 Grafted Cotton Fiber: Preparation and Salt-Free Dyeing Properties”.Carbohydrate Polymers, 74: 250-256. Retrieved from https://doi.org/10.1016/j.carbpol.2008.02.006
  • 70. Namırtı O. 2013. Nanoteknoloji Ürünü Dendrimerler Kullanılarak Pamuk Liflerinin Reaktif Boyarmaddelerle Boyanabilirliğinin Geliştirilmesi (Master's thesis), Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ
  • 71. Ahmed M., Sukumar N., Yusuf A., Awol Y. 2022. Cationisation of cotton with natural source based gelatin for salt-free reactive dyeing of cationised cotton. Journal of Natural Fibers, 19(17), 15353-15366. Retrieved from https://doi.org/10.1080/15440478. 2022.2125920
  • 72. Bulut M. O., Akçalı K. 2024. Sustainable Cationic Cotton with Keratin Hydrolysate. Fibers and Polymers, 1-13. Retrieved from https://doi.org/10.1007/s12221-024-00626-0
  • 73. Tsimpouki L., Papapetros K., Anastasopoulos C., Sygellou L., Soto-Beobide A., Andrikopoulos K. S., Kallitsis J. K. 2023. Water-soluble quaternized copolymers as eco-friendly cationic modifiers of cotton fabrics for salt-free reactive dyeing applications. Cellulose, 30(9), 6031-6050. Retrieved from https://doi.org/10.1007/s10570-023-05220-w
  • 74. Houshyar S., Amirshahi S.H. 2002. Treatment of Cotton with Chitosan and Its Effect on Dyeability with Reactive Dyes. Iranian Polymer Journal, 11 (5): 295-301
  • 75. Kampeerapappun P., Phattararittigul T., Jittrong S., Kullachod D. 2010. Effect of Chitosan and Mordants on Dyeability of Cotton Fabrics with Ruellia tuberosa Linn. Chiang Mai J. Sci., 38(1): 95-104
  • 76. Singha K., Maity S., Singha M. 2012. The Salt-Free Dyeing on Cotton: An Approach to Effluent Free Mechanism; Can Chitosan be a Potential Option. International Journal of Textile Science: 1(6): 69-77 Retrieved from https://doi.org/10.5923/j.textile.20120106.03
  • 77. Bhuiyan M.A.R., Shaid A., Khan M.A. 2014. Cationization of Cotton Fiber by Chitosan and Its Dyeing with Reactive Dye without Salt. Chemical and Materials Engineering, 2(4): 96- 100, Retrieved from https://doi.org/10.13189/cme.2014.020402
  • 78. Ibrahim N.A., El-Sayed W.A., Ameen N.A. 2010. A novel technique to minimise energy and pollution in the dyeing of linen fabric. Color Technol 126:289–295. Retrieved from https://doi.org/10.1111/j.1478-4408.2010.00263.x
  • 79. Chatha S. S., Hussain A. I., Ali S., Saif M. J., Mallhi A. I., Sagir M., & Naz M. Y. 2016. Significance of chitosan to improve the substantivity of reactive dyes. Journal of the Chilean Chemical Society, 61(2), 2895-2897 Retrieved from https://doi.org/10.4067/S0717-97072016000200009
  • 80. Giacomini F., de Souza A.A.U., de Barros M.A.S.D. 2020. Cationization of cotton with ovalbumin to improve dyeing of modified cotton with cochineal natural dye. Text Res J. Retrieved from https://doi.org/10.1177/0040517519899652
  • 81. Flinčec Grgac S., Tarbuk A., Dekanić T., Sujka W., Draczyński Z. 2020. The chitosan implementation into cotton and polyester/cotton blend fabrics. Materials, 13(7), 1616. Retrieved from https://www.mdpi.com/1996-1944/13/7/1616
  • 82. Rehman A., Iqbal K., Azam F., Safdar F., Ashraf M., Maqsood H. S., Basit A. 2021a. To enhance the dyeability of cotton fiber with the application of reactive dyes by using chitosan. The Journal of The Textile Institute, 112(8), 1208-1212. Retrieved from https://doi.org/10.1080/00405000.2020.1805952
  • 83. Ke G. Z., Zhu K. D., Chowdhury M. H. 2021. Dyeing of Cochineal natural dye on cotton fabrics treated with oxidant and chitosan. Journal of Natural Fibers 18 (3):317–29. Retrieved from https://doi.org/10.1080/15440478.2019.1623742
  • 84. Hegazy B. M., Othman H., Hassabo A. G. 2022. Polycation natural materials for improving textile dyeability and functional performance. Journal of Textiles, Coloration and Polymer Science, 19(2), 155-178. https://doi.org/10.21608/jtcps.2022.131643.1116
  • 85. Mahbub M. A., Mahmud M. H.. Ahona M. J., Ahmed T., Ashraf S. M., Sultana J. A., Islam M. T. 2024. Chitosan as a cationizing agent in pigment dyeing of cotton fabric. Carbohydrate Polymer Technologies and Applications, 7, 100502. Retrieved from https://doi.org/10.1016/j.carpta.2024.100502
  • 86. Ben Hamida Ep Abidi S., Štěpánová V., Zahedi L., Kovačova M., Nasadil P., Humpoliček P., Kováčik D. 2024. Enhancement of the dyeability and antibacterial properties of cotton fabric by plasma assisted cationization using chitosan and quaternized poly [bis (2‐chloroethyl) ether‐alt‐1, 3‐bis [3‐(dimethylamino) propyl] urea. Cellulose. Retrieved from https://doi.org/10.1007/s10570-024-06027-z
  • 87. Farrell M. J., Hauser P. J. 2013. Cationic Cotton, Reservations to Reality. AATCC Review, 13(5).
  • 88. 10 November 2024, Webpage, Retrieved from: https://www.ozanteks.com.tr/index.php
  • 89. 10 november 2024, Ev Tekstili Raporu, Retrieved from: https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/Ev%20Tekstili%20Raporu- 2022.pdf
  • 90. 10 November 2024, Webpage, Retrieved from: https:// www.surdurulebilirisodulleri.com/surdurulebilir-is-odulleri-2020/
  • 91. Yıldırım F. F., Elibüyük S. A., Öztürk S., Avinc O., Çörekcioğlu M., Güngör A. 2024. The Importance of Corporate Social Responsibility Studies in Textile Companies and a Case Study: Ozanteks Tekstil Company’s Corporate Social Responsibility Studies. In Corporate Social Responsibility in Textiles and Fashion (pp. 177-198). Cham: Springer Nature Switzerland.
  • 92. Yıldırım F. F., Hasçelik B., Yumru S., Palamutcu S. 2019. Analysis of water consumption and saving potential in a cotton textile dye house in Denizli –Turkey, Water in Textiles and Fashion, Consumption, footprint and life cycle assessment, Woodhead publishing Elsevier, Chapter 7, pp. 115-134
  • 93. Srikulkit K., Larpsuriyakul P. 2002. Process of dyeability modification and bleaching of cotton in a single bath. Coloration technology, 118(2), 79- 84.
  • 94. Wang G. B., Song K. H. 2011. Dyeability and colorfastness of knitted fabrics with natural dye Pinux TM (Part I). Journal of the Korean Society of Clothing and Textiles, 35(12), 1477-1485. Retrieved from http://dx.doi.org/10.5850/JKSCT.2011.35.12.1477
  • 95. Gulenc I. F., Bilgin G. A. 2010. Yatırım Kararları İçin Bir Model Önerisi: Ahp Yöntemi-A Model Proposal For Investment Decisions: Ahp Method. Öneri Dergisi, 9(34), 97-107.
  • 96. Min H. 1994. Location analysis of international consolidation terminals using the analytic hierarchy process. Journal of Business Logistics, 15(2), 25.
  • 97. Tektas A., Hortacsu A. 2003. Karar Vermede Etkinliği Artıran Bir Yöntem: Analitik Hiyerarşi Süreci Ve Mağaza Seçimine Uygulanması. Iktisat Isletme ve Finans, 18(209), 52-61.
  • 98. Supçiller A., Çapraz O. 2011. AHP-TOPSIS yöntemı̇ ne dayali tedarı̇ kçı̇ seçı̇ mı̇ uygulamasi. Istanbul University Econometrics and Statistics e- Journal, (13), 1-22.
  • 99. Saaty T. L. 1990. How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26. Retrieved from https://doi.org/10.1016/0377-2217(90)90057-i
  • 100. Youssef Y.A. 2000. Direct dyeing of cotton fabrics pretreated with cationising agents, Journal of Society Dyers and Colourists, 116(10), pp. 316- 322, Retrieved from https://doi.org/10.1111/j.1478-4408.2000.tb00008.x
  • 101. Jang J., Ko S. W., & Carr C. M. 2001. Investigation of the improved dyeability of cationised cotton via photografting with UV active cationic monomers. Coloration Technology, 117(3), 139-146, Retrieved from https://doi.org/10.1111/j.1478-4408.2001.tb00052.x
  • 102. Mandal S. 2017. Capping and Characterizing Dyeing Properties of Cationized Cotton, (PhD Thesis), North Carolina, USA
  • 103. Muthu S. S. (Ed.) 2018. Sustainable innovations in textile chemistry and dyes. Springer Retrieved from https://doi.org/10.1007/978-981-10-8600-7
  • 104. Ren J. L., Sun R. C., Liu C. F., Chao Z. Y., Luo W. 2006. Two-step preparation and thermal characterization of cationic 2- hydroxypropyltrimethylammonium chloride hemicellulose polymers from sugarcane bagasse. Polymer Degradation and Stability, 91(11), 2579- 2587 Retrieved from https://doi.org/10.1016/ j.polymdegradstab.2006.05.008
  • 105. Kannan M. S. S., Gobalakrishnan M., Kumaravel S., Nithyanadan R., Rajashankar K. J., Vadicherala T. 2006. Influence of cationization of cotton on reactive dyeing. Journal of Textile and Apparel, Technology and Management, 5(2), 1-16
  • 106. Gedik G., Yavas A., Avinc O., Simsek Ö. 2013. Cationized Natural Dyeing of Cotton Fabrics with Corn Poppy (Papaver rhoeas) and Investigation of Antibacterial Activity. Asian Journal of Chemistry, 25(15) Retrieved from https://doi.org/10.14233/ajchem.2013.14793
  • 107. Ticha M. B., Meksi N., Drira N., Kechida M., Mhenni M. F. 2013. A promising route to dye cotton by indigo with an ecological exhaustion process: A dyeing process optimization based on a response surface methodology. Industrial Crops and Products, 46, 350-358 Retrieved from https://doi.org/10.1016/ j.indcrop. 2013.02.009
  • 108. Haddar W., Ticha M. B., Guesmi A., Khoffi F., Durand B. 2014. A novel approach for a natural dyeing process of cotton fabric with Hibiscus mutabilis (Gulzuba): process development and optimization using statistical analysis. Journal of Cleaner Production, 68, 114-120. Retrieved from https://doi.org/10.1016/ j.jclepro.2013.12.066
  • 109. Berns R. S. 2000. Billmeyer and Saltzman’s Principles of Color Technology, 3rd edition, John Wiley & Sons, 23-24
  • 110. Rehan M., Mahmoud S.A., Mashaly H.M., Youssef B.M. 2020. β-Cyclodextrin assisted simultaneous preparation and dyeing acid dyes onto cotton fabric. React Funct Polym 151:104573.
There are 110 citations in total.

Details

Primary Language English
Subjects Textile Sciences and Engineering (Other)
Journal Section Articles
Authors

Fatma Filiz Yıldırım 0000-0003-3490-8538

Sultan Aras Elibüyük 0000-0002-1866-6332

Osman Ozan Avinc 0000-0001-8653-5257

Şaban Yumru 0000-0001-9102-6078

Mustafa Çörekcioğlu 0000-0001-7976-6049

Project Number 119C070
Early Pub Date October 1, 2025
Publication Date November 9, 2025
Submission Date April 8, 2025
Acceptance Date July 16, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

APA Yıldırım, F. F., Aras Elibüyük, S., Avinc, O. O., … Yumru, Ş. (2025). Part 1: Cationization of Cotton Terry Towel Fabrics by Exhaustion Method; Labscale and Commercial Scale Trials. Textile and Apparel, 35(3), 244-262. https://doi.org/10.32710/tekstilvekonfeksiyon.1671647

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.