Simulation of the Operation of an Autonomous Wind Power Plant with Aerodynamic Multiplication Based on an Asynchronous Generator with a Phase Rotor with Excitation From a Voltage-Source Inverter
Year 2025,
Volume: 5 Issue: 2, 142 - 151, 16.06.2025
Hlib Strunkin
Abstract
The article indicates the relevance of the construction of autonomous wind power plants (WPPs) in Ukraine. Information is provided on a new autonomous WPP with aerodynamic multiplication based on an asynchronous generator with a phase rotor (AGPR) with excitation from a voltage-source inverter. The construction of a simulation model of an autonomous WPP in the PSIM modeling program (Powerism Inc; Michigan, U.S.A.) environment is covered. The operation of the installation is simulated when the speed of the primary wind flow changes. Conclusions are made about the efficiency of the autonomous wind power installation with aerodynamic multiplication based on an AGPR with excitation from a voltage-source inverter when the speed of the primary wind flow changes.
Thanks
The author would like to express my deepest gratitude to Dr. Mehmet Onur Gülbahçe, İstanbul Technical University, Department of Electrical Engineering, for a number of valuable comments and advice during the preparation of the manuscript.
References
-
1. D. Shmyhal Speech of the Prime Minister of Ukraine Denys Shmyhal at the Government meeting. Available: https:// www.kmu. gov.ua/n ews/prom ova-prem ier-mini stra-ukr ainy-den ysa-shmy halia-na -zasidan niuriadu30072024.
-
2. M. M. A. Rahman, and A. T. Al Awami, “Decentralized wind-PV-diesel based hybrid power generation,” in 2nd International Conference on Electrical Engineering and Information and Communication Technology, iCEEiCT 2015 Article 7307472. Institute of Electrical and Electronics Engineers Inc., 2015.
-
3. C.-C. Zhu, and Y. Li, “Reliability Analysis of Wind Turbines.” Stability Control and Reliable Performance of Wind Turbines, 2018.
-
4. J. Pohl, J. Gabriel, and G. Hübner, “Understanding stress effects of wind turbine noise – The integrated approach,” Energy Policy, vol. 112, pp. 119–128, Jan. 2018.
-
5. R. Ranjan, S. Kumar, S. K. Ghosh, and M. Kumar, “Experimental and statistical analysis of wear on gear material,” Lubr. Sci., vol. 35, no. 6, pp. 438–448, 2023.
-
6. М. S. Golubenko, V. Е. Olishevska, S. D. Kurdyukov, G. S. Olishevsky, and S. S. Kurdyukov, “Wind electric turbo-generator TG-750,” Sci. Innov., vol. 6, pp. 71–77, 2008.
-
7. D. G. Alekseevskiy, Synthesis of Wind Power Plants Electromechanical Systems with Aerodynamic Multiplication. Doctor. Tech. sci. diss. Kharkiv, 2020, 331p. https://repository.kpi.kharkov.ua/server/api/core/bitstreams/fac9aec4-e8fa-4ec0-8757-4c3ef8f6c203/content
-
8. P. Andrienko, D. Alekseevskiy, O. Blyzniakov, O. Nemykina, and I. Nemudriy, “Enhancement of the effectiveness of wind turbines with aerodynamic multiplication,” IEEE 4th International Conference on Modern
Electrical and Energy System (MEES), Kremenchuk, Ukraine, 2022, pp. 1–4.
-
9. Pat. UA26494, H02K 17/34. Autonomous wind power generating system / Aleksievsky D.G., Burov O.M., Veselov K.I., Omelchuk N.A., Pereverzev A.V., Semenov V.V., Strunkin G.M., Taranets A.V.”, applicant and Patent Holder – Zaporizhzhya State Engineering Academy. - No. 200705178 application, 05/11/2007; publ. 09/25/2007, Bulletin. No. 16. https://ua.patents.su/2-26494-avtonomna-vitroelektrogeneruyucha-sistema.html
-
10. A. G. Ufimtsev, USSR Patent No. 1457, Class 88-c. Wind-Powered Generator G. Ufimtsev Declared 14.01.1924; published 31.07.1926.
-
11. N. V. Krasovsky, Wind Turbine Diagram with Aerodynamic Transmission for Capacities of 100–3,000 kW / N.V. Krasovsky // Izvestia OGIN, Vol 5. Moscow: USSR Academy of Sciences, 1939, 15p.
-
12. U. Hutter, Patent US4197056, F03D 1/00, F03D 11/04. Wind-driven power plant / Ulrich Hutter; – US 05/935558, declared, 21.08.1978; published. 08.04.1980.
-
13. Y. A. Madsen, Patent EP 1 390 615, F03D 1/02, F03D 11/00. WIND TURBINE HAVING SECONDARY ROTORS / Helge Aagaard Madsen, Flemming Rasmussen; Technical University of Denmark 2800 Lyngby (DK). –
02735087.5, declared. 29.11.1990; published. 30.08.2008. https://patentimages. storage.googleapis.com/4b/5f/1c/876f0f7dccbb31/WO2002086312A1.pdf.
-
14. M. S. Golubenko, Patent for the invention UA49970, IPC F03D, 1/00. Wind engine / M.S. Golubenko, O.L. Kadatskyi, V.S. Legeza, V.O. Tsyganov, S.I. Los, G.V. Halmakov; applicant and patent holder State Design Bureau 255 “Southern” named after M.K. Angel – No. 2000031794, application 30.03.2002; published 15.10.2002, Bull. No. 10. https://patentimages.storage.googleapis.com/c9/5d/64/8153a821dae09a/UA49970C2.pdf
-
15. P. D. Andrienko, “The issues of converter implementation for autonomous operation mode of wind-electric unit TG-1000 type,” Bull. Natl Tech. Univ., vol. 28, p. 343, 2010.
-
16. P. Jamieson, “Top-level rotor optimisations based on actua-tor disc theory,” Wind Energy Sci., vol. 5, no. 2, pp. 807–818, 2020.
-
17. L. Morgan, and W. Leithead, “Aerodynamic modelling of a novel vertical axis wind turbine concept,” J. Phys. Conf. S., vol. 2257, no. 1, 2022.
-
18. L. B. Morgan, A. K. Amiri, W. Leithead, and J. Carroll, “Effect of blade inclination angle for straight bladed vertical axis wind turbines, wind Energ,” Sci. Discuss.
-
19. L. Morgan, W. Leithead, and J. Carroll, “On the use of secondary rotors for vertical axis wind turbine power take off,” Wind Energy, vol. 27, no. 6, pp. 569–582, 2024.
-
20. M. S. Golubenko, Patent for the invention UA 115632, IPC F03D 1/00. Multi-rotor Wind Engine / M.S. Golubenko, V.I. Kuvshinov; Applicant and Patent Holder State Design Bureau, 255 “Southern” named after M.K. Angel – No. 201608647, application, 08.08.16; published 27.11.17, Bull. No. 22.
-
21. P. D. Andrienko, “Electricity conversion circuit wind power plants with aerodynamic animation”, in Electromechanical and energy saving systems, P. D. Andrienko, V. P. Metelsky, I. Yu, Nemudryi, A.A. Nikonova, Eds. Kremenchuk: Kremenchutsk National University named after Mikhail Ostrogradsky, Vol. 3. pp. 613–614, 2012.
-
22. G. Abadi, J. Lopez, M. A. Rodriguez, L. Marroyo, and G. Iwanski, Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation, 1st ed. NJ, USA: John Wiley & Sons, 2011.
-
23. M. Ghodbane-Cherif, S. Skander-Mustapha, and I. Slama-Belkhodja, “Start-up system design for small scale autonomous DFIG wind turbine,” Wind Eng., vol. 45, no. 4, pp. 753–768, 2021.
-
24. M. Abulizi, W. Shi, Y. Hu, M. Bahati, and C. Zhang, “Study on current controller of doubly-fed induction generator with variable parameters.” 2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA). New York, United States of America: IEEE, pp.484–489, 2024.
-
25. W. Ullah, F. Khan, U. B. Akuru, S. Hussain, M. Yousuf, and S. Akbar, “A novel dual electrical and dual mechanical wound field flux switching generator for co-rotating and counter-rotating wind turbine applications,” IEEE Trans. Ind. Appl., vol. 60, no. 1, pp. 184–195, Jan.–Feb. 2024.
-
26. M. S. Chabani, M. T. Benchouia, A. Golea, and M. Becherif, “Finite-state predictive current control of a standalone DFIG-based wind power generation systems: Simulation and experimental analysis,” J. Control Autom. Electr. Syst., vol. 32, no. 5, pp. 1332–1343, 2021.
-
27. S. Soued et al., “Experimental behaviour analysis for optimally controlled standalone DFIG system,” IET Electr. Power Appl., vol. 13, no. 10, pp. 1462–1473, 2019.
-
28. B. Desalegn, D. Gebeyehu, and B. Admasu, “Smoothing electric power production with DFIG-based wind energy conversion technology by employing hybrid controller model,” Energy Rep., vol. 10, pp. 38–60, 2023.
-
29. T. Mebkhouta, A. Golea, R. Boumaraf, T. M. Benchouia, D. Karboua, M. Bajaj, M. Chebaani, and V. Blazek. “Sensorless finite set predictive current control with MRAS estimation for optimized performance of standalone DFIG in wind energy systems”. Results Eng., vol. 24, 103622, 2024.
-
30. “PSIM User's guide.” Available: https:// powersim tech.com /wp-cont ent/uplo ads/2021 /01/PSIM -User-Ma nual.pdf.
-
31. N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics, Converters, Applications and Design”. Chichester, UK: John Wiley & Sons, Inc, 2003.
-
32. H. Strunkin, Application of Power Electronics Devices [Застосування пристроїв силової електроніки]. Dnipro Serednyak T.K., 2024, 408p. Available: https://zenodo.org/records/15256472.
-
33. D. Kumar, and K. Chatterjee, “A review of conventional and advanced MPPT algorithms for wind energy systems,” Renew. Sustain. Energy Rev., vol. 55, pp. 957–970, 2016.
-
34. C. Anderson, Wind Turbines: Theory and Practice. Cambridge: Cambridge University Press, 2020.
-
35. C. M. C. G. Fernandes, L. Blazquez, J. Sanesteban, R. C. Martins, and J. H. O. Seabra, “Energy efficiency tests in a full scale wind turbine gearbox,” Tribol. Int., vol. 101, pp. 375–382, 2016.
-
36. J. Carroll, and W. E. Leithead, Patent JP2022502600A, F03D3/02. / James Carroll, William Edward LEITHEAD. Efficient Wind Energy Transducer with no Gearbox or Multi-Pole Generator. Glasgow: University of Strathclyde.
-
37. Handbook of Electrical Machines. In Two Volumes. Under the General Editorship of I.P. Kopylov and B.K. Klokov, Vol. 1. Moscow: Energoatomizdat, 1988, 456p.
-
38. Y. G. Son, et al. “Test results of an inverter system for 750kW gearless wind turbine,” Proceedings of the Korean Society for New and Renewable Energy Conference, 2005, Spring Conference of the Korean Society for New and Renewable Energy, 2005, pp. 59–63. Available: https://www.dbpi a.co.kr/ journal/ articleD etail?no deId=NOD E0618828 8.
-
39. Eaton Power Xpert 9395P. Available: https:// www.eato n.com/co ntent/da m/eaton/ products /backup- power-up s-surge- it-power -distrib ution/ba ckup-pow er-ups/p ower-xpe rt-9395/ india/Eaton%2093 95P%20UPS%20Cata logues%2 0750kW%2 0-%20900 kW.PDF.
-
40. Sectors > Wind Energy > Wind Converters > DFIG 500-8000. Available: https:// www.inge team.com /en-us/s ectors/w ind-powe r-energy /p15_23_ 250_22/d fig-500- 5000.asp x.
-
41. M. Dubois, Review of Electromechanical Conversion in Wind Turbines, 2000.