Research Article
BibTex RIS Cite
Year 2022, , 236 - 245, 30.09.2022
https://doi.org/10.51972/tfsd.1164517

Abstract

References

  • 1. Docea, A.O., Mitrut, P., Grigore, D. et al. (2012). Immunohistochemical expression of TGF beta (TGF-beta), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom J Morphol Embryol, 53(3), 683-92. https://dx.doi.org/10.23188426
  • 2. Salehi, B., Jornet, P.L., Lopez, E.P.F. et al. (2019). Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules, 9(3), 1-23. https://dx.doi.org/10.3390/biom9030106.
  • 3. Sharifi-Rad, M., Kumar, N.V.A., Zucca, P. et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 11, 1-21. https://dx.doi.org/10.3389/fphys.2020.00694.
  • 4. Ghad, A., Mahjoub, S., Tabandeh, F. et al. (2014). Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Caspian J Intern Med., 5, 156–61. https://dx.doi.org/10.PMC4143737
  • 5. Park, W., Heo, Y.J., Han, D.K. (2018). New opportunities for nanoparticles in cancer immunotherapy. Biomater Res., 22, 24-33. https://dx.doi.org/10.1186/s40824-018-0133-y.
  • 6. Jovčevska, I., Muyldermans, S. (2020). The therapeutic potential of nanobodies. BioDrugs Clin Immunotherap Biopharm Gene Therapy, 34(1), 11-26. https://dx.doi.org/10.1007/s40259-019-00392-z.
  • 7. Zitvogel, L., Apetoh, L., Ghiringhelli, F. et al. (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol, 8(1), 59-73. https://dx.doi.org/doi: 10.1038/nri2216.
  • 8.Wang, R., Billone, P.S., Mullett, W.M. (2013). Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater, 1-12. https://doi.org/10.1155/2013/629681
  • 9. Adair, J.H., Parette, M.P., Altinoglu, E.I. (2010). Nanoparticulate alternatives for drug delivery. ACS Nano., 4(9), 4967-4970. https://dx.doi.org/doi: 10.1021/nn102324e.
  • 10. Altinoglu, E.I., Adair, J.H. (2010). Near infrared imaging with nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, 2(5), 461-477. https://dx.doi.org/doi:10.1002/wnan.77
  • 11. Wang, X., Zhang, H., Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2, 141-60. https://dx.doi.org/doi:10.20517/cdr.2019.10
  • 12. Mansoori, B., Mohammadi, A., Davudian, S. et al. (2017) The different mechanisms of cancer drug resistance: a brief review. Tabriz Univ. Med. Sci., 7, 339-48. https://dx.doi.org/doi:10.15171/apb.2017.041
  • 13. Longacre, M., Snyder, N., Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers, 6, 1769-92. https://dx.doi.org/doi:10.3390/cancers6031769
  • 14. Xue, X., Liang, X.J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer, 31, 100-109. https://dx.doi.org/doi:10.5732/cjc.011.10326
  • 15. Robey, R.W., Pluchino, K.M., Hall, M.D. et al. (2018). Revisiting the role of efflux pumps in multidrug-resistant cancer. Nat Rev Cancer, 18, 452-64. https://dx.doi.org/doi: 10.1038/s41568-018-0005-8.
  • 16. Singh, A., Benjakul, S., Prodpran, T. (2019). Ultrasound assisted extraction of chitosan from squid pen: molecular characterization and fat binding capacity. J Food Sci., 84, 224-234. https://dx.doi.org/doi: 10.1111/1750-3841.14439.
  • 17. Mittal, A., Singh, A., Benjakul, S. et al. (2020). Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocol, 111, 1-10. https://doi.org/10.1016/j.foodhyd.2020.106384
  • 18. Demoulin, J., Essaqhir, A. (2014). PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev, 25, 273-83. https://dx.doi.org/doi: 10.1016/j.cytogfr.2014.03.003.
  • 19. Urban-Klein, B., Werth, S., Abuharbeid, S. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther, 12, 461-6. https://dx.doi.org/doi:10.1038/sj.gt.3302425
  • 20. Howard, K.A., Rahbek, U.L., Liu, X. et al. (2006). RNA intereference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther, 14, 476-84. https://dx.doi.org/doi: 10.1016/j.ymthe.2006.04.010.
  • 21. Howard, K.A., Paludan, S.R., Behlke, MA. et al. (2009). siRNA nanoparticle–mediated TNF-alpha knockdown in peritoneal macrophages for antiinflammatory treatment in a murine arthritis model. Mol Ther, 17, 162-8. https://dx.doi.org/doi:10.1038/mt.2008.220
  • 22. Singh, A., Benjakul, S., Prodpran, T. (2019). Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Prod Process Nutri., 1, 1-10. https://doi.org/10.1186/s43014-019-0005-4
  • 23. Li, J., Cai, C., Ja, L. (2018). Chitosan-Based Nanomaterials for Drug Delivery. Molecules, 23, 2661. https://dx.doi.org/doi:10.3390/molecules23102661.
  • 24. Bhattarai, N., Gunn, J., Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev., 62(1), 83–99. https://dx.doi.org/doi:10.1016/j.addr.2009.07.019.
  • 25. Torabi, N., Dobakhti, F., Faghihzadeh S. et al. (2018). In vitro and in vivo effects of chitosan-praziquantel and chitosan-albendazole nanoparticles on Echinococcus granulosus Metacestodes. Parasitol Res., 117, 2015–2023. https://dx.doi.org/doi:10.1007/s00436
  • 26. Jhaveri, J., Raichura, Z., Khan, T. et al. (2021). Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules, 26,272.https://dx.doi.org/doi:10.3390/molecules26020272
  • 27. Cheimonidi, C., Samara, P., Polychronopoulos, P. et al. (2018). Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol, 16, 169-178. https://dx.doi.org/doi: 10.1016/j.redox.2018.02.015.
  • 28. Tavana, E., Mollazadeh, H., Mohtashami, E. et al. (2020). shRNA-VEGF: A promising phytochemical for the treatment of glioblastoma multiforme. BioFactors, 46, 356-366. https://dx.doi.org/doi: 10.1002/biof.1605.
  • 29. Taskin, T., Dogan, M., Yilmaz, B.N. et al. (2020). Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatalysis and Agricultural Biotechnology, 27, 1-7. 101670. https://doi.org/10.1016/j.bcab.2020.101670
  • 30. Calvo, P., Remunan-Lopez, C., Vila-Jato, JL. et al. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci., 63(1), 125-132. https://doi.org/10.1002/(SICI)1097-4628
  • 31. Wikanta, T., Erizal, T., Tjahyono, T. et al. (2012). Synthesis of polyvinyl alcohol-chitosan hydrogel and study of its swelling and antibacterial properties. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 7(1), 1-10.
  • 32. Purbowatiningrum, N., Ismiyarto, E.F. (2017). Cinnamomum casia Extract Encapsulated Nanochitosan as Antihypercholesterol. IOP Conf Ser: Mater Sci Eng., 172, 012035. https://dx.doi.org/doi:10.1088/1757-899X/172/1/012035
  • 33. Han, H.J., Lee, J.S., Park, S.A. et al. (2015). Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids and Surfaces B: Biointerfaces, 130, 93-100. https://dx.doi.org/doi: 10.1016/j.colsurfb.2015.03.050
  • 34. Keawchaoon, L., Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B: Biointerfaces, 84, 163-171. https://dx.doi.org/doi: 10.1016/ j.colsurfb. 2010.12.031
  • 35. Mohammadi, A., Hashemi, M., Hosseini, S. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol., 110, 203-213. https://doi.org/10.1016/j.postharvbio.2015.08.019
  • 36. Taşkın, D., Doğan, M., Ermanoğlu, M. et al. (2021). Achillea goniocephala Extract Loaded into Nanochitosan: In Vitro Cytotoxic and Antioxidant Activity. Clinical and Experimental Health Sciences, 11(4), 659-666. https://doi.org/10.33808/clinexphealthsci.972180
  • 37. Doğan, M., Karademir, M. (2020). Effect of captopril on the oxidative damage caused by pentylenetetrazole in the SHSY-5Y human neuroblastoma cell line. Cumhuriyet Medical Journal, 42(4), 479-483. https://doi.org/10.7197/ cmj.830835
  • 38. Tang, H., Zhang, Y., Li, D. et al. (2018). Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem, 156, 190-205. https://dx.doi.org/doi: 10.1016/j.ejmech.2018.06.048.
  • 39. Chen, J. (2013). Recent advance in the studies of β-glucans for cancer therapy. Anticancer Agents Med Chem., 13, 679-80. https://dx.doi.org/doi: 10.2174/1871520611313050001
  • 40. Sachdev, E., Tabatabai, R., Roy, V. et al. (2019). PARP Inhibition in cancer: An update on clinical development. Target Oncol., 14, 657-79. https://doi.org/doi: 10.1007/s11523-019-00680-2.
  • 41. Sima, P., Richter, J., Vetvicka, V. (2019). Glucans as new anticancer agents. Anticancer Res., 39, 3373-78. https://doi.org/doi: 10.21873/anticanres.13480.
  • 42. Guo, C., Li, X., Wang, R. et al. (2016). Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2′-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep, 6, 1-9. https://doi.org/10.1038/srep32581.
  • 43. Chen, Z., Zhang, B., Gao, F. et al. (2018). Modulation of G2/M cell cycle arrest and apoptosis by luteolin in human colon cancer cells and xenografts. Oncol Lett., 15, 1559-1565. https://doi.org/10.3892/ol.2017.7475.
  • 44. Lee, S.I., Jeong, Y.J., Yu, A.R. et al. (2019). Carfilzomib enhances cisplatin-induced apoptosis in SK-NBE(2)-M17 human neuroblastoma cells. Sci Rep., 9, 1-14. https://doi.org doi: 10.1038/s41598-019-41527-0.
  • 45. Filiz, A.K., Joha, Z., Yulak, F. (2021). Mechanism of anti-cancer effect of β-glucan on HELA cell line. Bangladesh Journal of Pharmacology, 16(4), 122-128. https://doi.org doi: 10.3329/bjp.v16i4.54872

In vitro bioactivity and gene silencing effect of shRNA-VEGF loaded chitosan nanoparticles

Year 2022, , 236 - 245, 30.09.2022
https://doi.org/10.51972/tfsd.1164517

Abstract

Purpose: In this study, it is aimed to prepare chitosan nanoparticles containing shRNA-VEGF and evaluate their bioactivity by in vitro cell culture studies and to perform mechanical characterization of nanoparticles.
Material and Methods: Ionic chelation method was used to prepare nanoparticles. The XTT assay was used to assess the cytotoxic activity of shRNA-VEGF and shRNA-VEGF loaded NP on the HeLa and NIH 3T3 cells.
Results: According to the results IC50 values of shRNA-VEGF and NP including shRNA-VEGF were calculated. IC50 values of shRNA-VEGF and NP including shRNA-VEGF were 0.89±0.010 µg/mL and 0.52±0.004 µg/mL on HeLa cell line. Bax quantities of control, shRNA-VEGF, and shRNA-VEGF loaded NP was measured as 23.70±0.27 ng/mg protein, 34.64±0.36 ng/mg protein, and 39.46±0.54 ng/mg protein, respectively. According to the results, cleaved caspase 3 quantities of control, shRNA-VEGF, and shRNA-VEGF loaded NP was measured as 711.70±4.40 pg/mg protein, 767.23±3.82 pg/mg protein, and 825.32±5.06 pg/mg protein, respectively.
Conclusion: shRNA-VEGF and shRNA-VEGF loaded NP significantly reduced HeLa cell reproduction in a concentration-dependent manner while generating no cytotoxicity in NIH 3T3 cells. The expression of pro-apoptotic Bax and cleaved caspase 3 proteins was significantly increased by shRNA-VEGF and shRNA-VEGF loaded NP.

References

  • 1. Docea, A.O., Mitrut, P., Grigore, D. et al. (2012). Immunohistochemical expression of TGF beta (TGF-beta), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom J Morphol Embryol, 53(3), 683-92. https://dx.doi.org/10.23188426
  • 2. Salehi, B., Jornet, P.L., Lopez, E.P.F. et al. (2019). Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules, 9(3), 1-23. https://dx.doi.org/10.3390/biom9030106.
  • 3. Sharifi-Rad, M., Kumar, N.V.A., Zucca, P. et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 11, 1-21. https://dx.doi.org/10.3389/fphys.2020.00694.
  • 4. Ghad, A., Mahjoub, S., Tabandeh, F. et al. (2014). Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Caspian J Intern Med., 5, 156–61. https://dx.doi.org/10.PMC4143737
  • 5. Park, W., Heo, Y.J., Han, D.K. (2018). New opportunities for nanoparticles in cancer immunotherapy. Biomater Res., 22, 24-33. https://dx.doi.org/10.1186/s40824-018-0133-y.
  • 6. Jovčevska, I., Muyldermans, S. (2020). The therapeutic potential of nanobodies. BioDrugs Clin Immunotherap Biopharm Gene Therapy, 34(1), 11-26. https://dx.doi.org/10.1007/s40259-019-00392-z.
  • 7. Zitvogel, L., Apetoh, L., Ghiringhelli, F. et al. (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol, 8(1), 59-73. https://dx.doi.org/doi: 10.1038/nri2216.
  • 8.Wang, R., Billone, P.S., Mullett, W.M. (2013). Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater, 1-12. https://doi.org/10.1155/2013/629681
  • 9. Adair, J.H., Parette, M.P., Altinoglu, E.I. (2010). Nanoparticulate alternatives for drug delivery. ACS Nano., 4(9), 4967-4970. https://dx.doi.org/doi: 10.1021/nn102324e.
  • 10. Altinoglu, E.I., Adair, J.H. (2010). Near infrared imaging with nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, 2(5), 461-477. https://dx.doi.org/doi:10.1002/wnan.77
  • 11. Wang, X., Zhang, H., Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2, 141-60. https://dx.doi.org/doi:10.20517/cdr.2019.10
  • 12. Mansoori, B., Mohammadi, A., Davudian, S. et al. (2017) The different mechanisms of cancer drug resistance: a brief review. Tabriz Univ. Med. Sci., 7, 339-48. https://dx.doi.org/doi:10.15171/apb.2017.041
  • 13. Longacre, M., Snyder, N., Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers, 6, 1769-92. https://dx.doi.org/doi:10.3390/cancers6031769
  • 14. Xue, X., Liang, X.J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer, 31, 100-109. https://dx.doi.org/doi:10.5732/cjc.011.10326
  • 15. Robey, R.W., Pluchino, K.M., Hall, M.D. et al. (2018). Revisiting the role of efflux pumps in multidrug-resistant cancer. Nat Rev Cancer, 18, 452-64. https://dx.doi.org/doi: 10.1038/s41568-018-0005-8.
  • 16. Singh, A., Benjakul, S., Prodpran, T. (2019). Ultrasound assisted extraction of chitosan from squid pen: molecular characterization and fat binding capacity. J Food Sci., 84, 224-234. https://dx.doi.org/doi: 10.1111/1750-3841.14439.
  • 17. Mittal, A., Singh, A., Benjakul, S. et al. (2020). Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocol, 111, 1-10. https://doi.org/10.1016/j.foodhyd.2020.106384
  • 18. Demoulin, J., Essaqhir, A. (2014). PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev, 25, 273-83. https://dx.doi.org/doi: 10.1016/j.cytogfr.2014.03.003.
  • 19. Urban-Klein, B., Werth, S., Abuharbeid, S. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther, 12, 461-6. https://dx.doi.org/doi:10.1038/sj.gt.3302425
  • 20. Howard, K.A., Rahbek, U.L., Liu, X. et al. (2006). RNA intereference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther, 14, 476-84. https://dx.doi.org/doi: 10.1016/j.ymthe.2006.04.010.
  • 21. Howard, K.A., Paludan, S.R., Behlke, MA. et al. (2009). siRNA nanoparticle–mediated TNF-alpha knockdown in peritoneal macrophages for antiinflammatory treatment in a murine arthritis model. Mol Ther, 17, 162-8. https://dx.doi.org/doi:10.1038/mt.2008.220
  • 22. Singh, A., Benjakul, S., Prodpran, T. (2019). Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Prod Process Nutri., 1, 1-10. https://doi.org/10.1186/s43014-019-0005-4
  • 23. Li, J., Cai, C., Ja, L. (2018). Chitosan-Based Nanomaterials for Drug Delivery. Molecules, 23, 2661. https://dx.doi.org/doi:10.3390/molecules23102661.
  • 24. Bhattarai, N., Gunn, J., Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev., 62(1), 83–99. https://dx.doi.org/doi:10.1016/j.addr.2009.07.019.
  • 25. Torabi, N., Dobakhti, F., Faghihzadeh S. et al. (2018). In vitro and in vivo effects of chitosan-praziquantel and chitosan-albendazole nanoparticles on Echinococcus granulosus Metacestodes. Parasitol Res., 117, 2015–2023. https://dx.doi.org/doi:10.1007/s00436
  • 26. Jhaveri, J., Raichura, Z., Khan, T. et al. (2021). Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules, 26,272.https://dx.doi.org/doi:10.3390/molecules26020272
  • 27. Cheimonidi, C., Samara, P., Polychronopoulos, P. et al. (2018). Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol, 16, 169-178. https://dx.doi.org/doi: 10.1016/j.redox.2018.02.015.
  • 28. Tavana, E., Mollazadeh, H., Mohtashami, E. et al. (2020). shRNA-VEGF: A promising phytochemical for the treatment of glioblastoma multiforme. BioFactors, 46, 356-366. https://dx.doi.org/doi: 10.1002/biof.1605.
  • 29. Taskin, T., Dogan, M., Yilmaz, B.N. et al. (2020). Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatalysis and Agricultural Biotechnology, 27, 1-7. 101670. https://doi.org/10.1016/j.bcab.2020.101670
  • 30. Calvo, P., Remunan-Lopez, C., Vila-Jato, JL. et al. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci., 63(1), 125-132. https://doi.org/10.1002/(SICI)1097-4628
  • 31. Wikanta, T., Erizal, T., Tjahyono, T. et al. (2012). Synthesis of polyvinyl alcohol-chitosan hydrogel and study of its swelling and antibacterial properties. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 7(1), 1-10.
  • 32. Purbowatiningrum, N., Ismiyarto, E.F. (2017). Cinnamomum casia Extract Encapsulated Nanochitosan as Antihypercholesterol. IOP Conf Ser: Mater Sci Eng., 172, 012035. https://dx.doi.org/doi:10.1088/1757-899X/172/1/012035
  • 33. Han, H.J., Lee, J.S., Park, S.A. et al. (2015). Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids and Surfaces B: Biointerfaces, 130, 93-100. https://dx.doi.org/doi: 10.1016/j.colsurfb.2015.03.050
  • 34. Keawchaoon, L., Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B: Biointerfaces, 84, 163-171. https://dx.doi.org/doi: 10.1016/ j.colsurfb. 2010.12.031
  • 35. Mohammadi, A., Hashemi, M., Hosseini, S. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol., 110, 203-213. https://doi.org/10.1016/j.postharvbio.2015.08.019
  • 36. Taşkın, D., Doğan, M., Ermanoğlu, M. et al. (2021). Achillea goniocephala Extract Loaded into Nanochitosan: In Vitro Cytotoxic and Antioxidant Activity. Clinical and Experimental Health Sciences, 11(4), 659-666. https://doi.org/10.33808/clinexphealthsci.972180
  • 37. Doğan, M., Karademir, M. (2020). Effect of captopril on the oxidative damage caused by pentylenetetrazole in the SHSY-5Y human neuroblastoma cell line. Cumhuriyet Medical Journal, 42(4), 479-483. https://doi.org/10.7197/ cmj.830835
  • 38. Tang, H., Zhang, Y., Li, D. et al. (2018). Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem, 156, 190-205. https://dx.doi.org/doi: 10.1016/j.ejmech.2018.06.048.
  • 39. Chen, J. (2013). Recent advance in the studies of β-glucans for cancer therapy. Anticancer Agents Med Chem., 13, 679-80. https://dx.doi.org/doi: 10.2174/1871520611313050001
  • 40. Sachdev, E., Tabatabai, R., Roy, V. et al. (2019). PARP Inhibition in cancer: An update on clinical development. Target Oncol., 14, 657-79. https://doi.org/doi: 10.1007/s11523-019-00680-2.
  • 41. Sima, P., Richter, J., Vetvicka, V. (2019). Glucans as new anticancer agents. Anticancer Res., 39, 3373-78. https://doi.org/doi: 10.21873/anticanres.13480.
  • 42. Guo, C., Li, X., Wang, R. et al. (2016). Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2′-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep, 6, 1-9. https://doi.org/10.1038/srep32581.
  • 43. Chen, Z., Zhang, B., Gao, F. et al. (2018). Modulation of G2/M cell cycle arrest and apoptosis by luteolin in human colon cancer cells and xenografts. Oncol Lett., 15, 1559-1565. https://doi.org/10.3892/ol.2017.7475.
  • 44. Lee, S.I., Jeong, Y.J., Yu, A.R. et al. (2019). Carfilzomib enhances cisplatin-induced apoptosis in SK-NBE(2)-M17 human neuroblastoma cells. Sci Rep., 9, 1-14. https://doi.org doi: 10.1038/s41598-019-41527-0.
  • 45. Filiz, A.K., Joha, Z., Yulak, F. (2021). Mechanism of anti-cancer effect of β-glucan on HELA cell line. Bangladesh Journal of Pharmacology, 16(4), 122-128. https://doi.org doi: 10.3329/bjp.v16i4.54872
There are 45 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Articles
Authors

Murat Doğan 0000-0003-2794-0177

Publication Date September 30, 2022
Submission Date August 20, 2022
Acceptance Date September 28, 2022
Published in Issue Year 2022

Cite

APA Doğan, M. (2022). In vitro bioactivity and gene silencing effect of shRNA-VEGF loaded chitosan nanoparticles. Turkish Journal of Science and Health, 3(3), 236-245. https://doi.org/10.51972/tfsd.1164517








Turkish Journal of Science and Health (TFSD) 

E-mail:  tfsdjournal@gmail.com

Creative Commons Lisansı

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

18106    18107    18238 18235 1839418234 1823618237    19024   18234   19690 19305215142164821682 21909  23284 30073

27460


25763