Research Article
BibTex RIS Cite
Year 2022, Volume: 3 Issue: 3, 236 - 245, 30.09.2022
https://doi.org/10.51972/tfsd.1164517

Abstract

References

  • 1. Docea, A.O., Mitrut, P., Grigore, D. et al. (2012). Immunohistochemical expression of TGF beta (TGF-beta), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom J Morphol Embryol, 53(3), 683-92. https://dx.doi.org/10.23188426
  • 2. Salehi, B., Jornet, P.L., Lopez, E.P.F. et al. (2019). Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules, 9(3), 1-23. https://dx.doi.org/10.3390/biom9030106.
  • 3. Sharifi-Rad, M., Kumar, N.V.A., Zucca, P. et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 11, 1-21. https://dx.doi.org/10.3389/fphys.2020.00694.
  • 4. Ghad, A., Mahjoub, S., Tabandeh, F. et al. (2014). Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Caspian J Intern Med., 5, 156–61. https://dx.doi.org/10.PMC4143737
  • 5. Park, W., Heo, Y.J., Han, D.K. (2018). New opportunities for nanoparticles in cancer immunotherapy. Biomater Res., 22, 24-33. https://dx.doi.org/10.1186/s40824-018-0133-y.
  • 6. Jovčevska, I., Muyldermans, S. (2020). The therapeutic potential of nanobodies. BioDrugs Clin Immunotherap Biopharm Gene Therapy, 34(1), 11-26. https://dx.doi.org/10.1007/s40259-019-00392-z.
  • 7. Zitvogel, L., Apetoh, L., Ghiringhelli, F. et al. (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol, 8(1), 59-73. https://dx.doi.org/doi: 10.1038/nri2216.
  • 8.Wang, R., Billone, P.S., Mullett, W.M. (2013). Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater, 1-12. https://doi.org/10.1155/2013/629681
  • 9. Adair, J.H., Parette, M.P., Altinoglu, E.I. (2010). Nanoparticulate alternatives for drug delivery. ACS Nano., 4(9), 4967-4970. https://dx.doi.org/doi: 10.1021/nn102324e.
  • 10. Altinoglu, E.I., Adair, J.H. (2010). Near infrared imaging with nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, 2(5), 461-477. https://dx.doi.org/doi:10.1002/wnan.77
  • 11. Wang, X., Zhang, H., Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2, 141-60. https://dx.doi.org/doi:10.20517/cdr.2019.10
  • 12. Mansoori, B., Mohammadi, A., Davudian, S. et al. (2017) The different mechanisms of cancer drug resistance: a brief review. Tabriz Univ. Med. Sci., 7, 339-48. https://dx.doi.org/doi:10.15171/apb.2017.041
  • 13. Longacre, M., Snyder, N., Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers, 6, 1769-92. https://dx.doi.org/doi:10.3390/cancers6031769
  • 14. Xue, X., Liang, X.J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer, 31, 100-109. https://dx.doi.org/doi:10.5732/cjc.011.10326
  • 15. Robey, R.W., Pluchino, K.M., Hall, M.D. et al. (2018). Revisiting the role of efflux pumps in multidrug-resistant cancer. Nat Rev Cancer, 18, 452-64. https://dx.doi.org/doi: 10.1038/s41568-018-0005-8.
  • 16. Singh, A., Benjakul, S., Prodpran, T. (2019). Ultrasound assisted extraction of chitosan from squid pen: molecular characterization and fat binding capacity. J Food Sci., 84, 224-234. https://dx.doi.org/doi: 10.1111/1750-3841.14439.
  • 17. Mittal, A., Singh, A., Benjakul, S. et al. (2020). Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocol, 111, 1-10. https://doi.org/10.1016/j.foodhyd.2020.106384
  • 18. Demoulin, J., Essaqhir, A. (2014). PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev, 25, 273-83. https://dx.doi.org/doi: 10.1016/j.cytogfr.2014.03.003.
  • 19. Urban-Klein, B., Werth, S., Abuharbeid, S. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther, 12, 461-6. https://dx.doi.org/doi:10.1038/sj.gt.3302425
  • 20. Howard, K.A., Rahbek, U.L., Liu, X. et al. (2006). RNA intereference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther, 14, 476-84. https://dx.doi.org/doi: 10.1016/j.ymthe.2006.04.010.
  • 21. Howard, K.A., Paludan, S.R., Behlke, MA. et al. (2009). siRNA nanoparticle–mediated TNF-alpha knockdown in peritoneal macrophages for antiinflammatory treatment in a murine arthritis model. Mol Ther, 17, 162-8. https://dx.doi.org/doi:10.1038/mt.2008.220
  • 22. Singh, A., Benjakul, S., Prodpran, T. (2019). Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Prod Process Nutri., 1, 1-10. https://doi.org/10.1186/s43014-019-0005-4
  • 23. Li, J., Cai, C., Ja, L. (2018). Chitosan-Based Nanomaterials for Drug Delivery. Molecules, 23, 2661. https://dx.doi.org/doi:10.3390/molecules23102661.
  • 24. Bhattarai, N., Gunn, J., Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev., 62(1), 83–99. https://dx.doi.org/doi:10.1016/j.addr.2009.07.019.
  • 25. Torabi, N., Dobakhti, F., Faghihzadeh S. et al. (2018). In vitro and in vivo effects of chitosan-praziquantel and chitosan-albendazole nanoparticles on Echinococcus granulosus Metacestodes. Parasitol Res., 117, 2015–2023. https://dx.doi.org/doi:10.1007/s00436
  • 26. Jhaveri, J., Raichura, Z., Khan, T. et al. (2021). Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules, 26,272.https://dx.doi.org/doi:10.3390/molecules26020272
  • 27. Cheimonidi, C., Samara, P., Polychronopoulos, P. et al. (2018). Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol, 16, 169-178. https://dx.doi.org/doi: 10.1016/j.redox.2018.02.015.
  • 28. Tavana, E., Mollazadeh, H., Mohtashami, E. et al. (2020). shRNA-VEGF: A promising phytochemical for the treatment of glioblastoma multiforme. BioFactors, 46, 356-366. https://dx.doi.org/doi: 10.1002/biof.1605.
  • 29. Taskin, T., Dogan, M., Yilmaz, B.N. et al. (2020). Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatalysis and Agricultural Biotechnology, 27, 1-7. 101670. https://doi.org/10.1016/j.bcab.2020.101670
  • 30. Calvo, P., Remunan-Lopez, C., Vila-Jato, JL. et al. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci., 63(1), 125-132. https://doi.org/10.1002/(SICI)1097-4628
  • 31. Wikanta, T., Erizal, T., Tjahyono, T. et al. (2012). Synthesis of polyvinyl alcohol-chitosan hydrogel and study of its swelling and antibacterial properties. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 7(1), 1-10.
  • 32. Purbowatiningrum, N., Ismiyarto, E.F. (2017). Cinnamomum casia Extract Encapsulated Nanochitosan as Antihypercholesterol. IOP Conf Ser: Mater Sci Eng., 172, 012035. https://dx.doi.org/doi:10.1088/1757-899X/172/1/012035
  • 33. Han, H.J., Lee, J.S., Park, S.A. et al. (2015). Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids and Surfaces B: Biointerfaces, 130, 93-100. https://dx.doi.org/doi: 10.1016/j.colsurfb.2015.03.050
  • 34. Keawchaoon, L., Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B: Biointerfaces, 84, 163-171. https://dx.doi.org/doi: 10.1016/ j.colsurfb. 2010.12.031
  • 35. Mohammadi, A., Hashemi, M., Hosseini, S. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol., 110, 203-213. https://doi.org/10.1016/j.postharvbio.2015.08.019
  • 36. Taşkın, D., Doğan, M., Ermanoğlu, M. et al. (2021). Achillea goniocephala Extract Loaded into Nanochitosan: In Vitro Cytotoxic and Antioxidant Activity. Clinical and Experimental Health Sciences, 11(4), 659-666. https://doi.org/10.33808/clinexphealthsci.972180
  • 37. Doğan, M., Karademir, M. (2020). Effect of captopril on the oxidative damage caused by pentylenetetrazole in the SHSY-5Y human neuroblastoma cell line. Cumhuriyet Medical Journal, 42(4), 479-483. https://doi.org/10.7197/ cmj.830835
  • 38. Tang, H., Zhang, Y., Li, D. et al. (2018). Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem, 156, 190-205. https://dx.doi.org/doi: 10.1016/j.ejmech.2018.06.048.
  • 39. Chen, J. (2013). Recent advance in the studies of β-glucans for cancer therapy. Anticancer Agents Med Chem., 13, 679-80. https://dx.doi.org/doi: 10.2174/1871520611313050001
  • 40. Sachdev, E., Tabatabai, R., Roy, V. et al. (2019). PARP Inhibition in cancer: An update on clinical development. Target Oncol., 14, 657-79. https://doi.org/doi: 10.1007/s11523-019-00680-2.
  • 41. Sima, P., Richter, J., Vetvicka, V. (2019). Glucans as new anticancer agents. Anticancer Res., 39, 3373-78. https://doi.org/doi: 10.21873/anticanres.13480.
  • 42. Guo, C., Li, X., Wang, R. et al. (2016). Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2′-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep, 6, 1-9. https://doi.org/10.1038/srep32581.
  • 43. Chen, Z., Zhang, B., Gao, F. et al. (2018). Modulation of G2/M cell cycle arrest and apoptosis by luteolin in human colon cancer cells and xenografts. Oncol Lett., 15, 1559-1565. https://doi.org/10.3892/ol.2017.7475.
  • 44. Lee, S.I., Jeong, Y.J., Yu, A.R. et al. (2019). Carfilzomib enhances cisplatin-induced apoptosis in SK-NBE(2)-M17 human neuroblastoma cells. Sci Rep., 9, 1-14. https://doi.org doi: 10.1038/s41598-019-41527-0.
  • 45. Filiz, A.K., Joha, Z., Yulak, F. (2021). Mechanism of anti-cancer effect of β-glucan on HELA cell line. Bangladesh Journal of Pharmacology, 16(4), 122-128. https://doi.org doi: 10.3329/bjp.v16i4.54872

In vitro bioactivity and gene silencing effect of shRNA-VEGF loaded chitosan nanoparticles

Year 2022, Volume: 3 Issue: 3, 236 - 245, 30.09.2022
https://doi.org/10.51972/tfsd.1164517

Abstract

Purpose: In this study, it is aimed to prepare chitosan nanoparticles containing shRNA-VEGF and evaluate their bioactivity by in vitro cell culture studies and to perform mechanical characterization of nanoparticles.
Material and Methods: Ionic chelation method was used to prepare nanoparticles. The XTT assay was used to assess the cytotoxic activity of shRNA-VEGF and shRNA-VEGF loaded NP on the HeLa and NIH 3T3 cells.
Results: According to the results IC50 values of shRNA-VEGF and NP including shRNA-VEGF were calculated. IC50 values of shRNA-VEGF and NP including shRNA-VEGF were 0.89±0.010 µg/mL and 0.52±0.004 µg/mL on HeLa cell line. Bax quantities of control, shRNA-VEGF, and shRNA-VEGF loaded NP was measured as 23.70±0.27 ng/mg protein, 34.64±0.36 ng/mg protein, and 39.46±0.54 ng/mg protein, respectively. According to the results, cleaved caspase 3 quantities of control, shRNA-VEGF, and shRNA-VEGF loaded NP was measured as 711.70±4.40 pg/mg protein, 767.23±3.82 pg/mg protein, and 825.32±5.06 pg/mg protein, respectively.
Conclusion: shRNA-VEGF and shRNA-VEGF loaded NP significantly reduced HeLa cell reproduction in a concentration-dependent manner while generating no cytotoxicity in NIH 3T3 cells. The expression of pro-apoptotic Bax and cleaved caspase 3 proteins was significantly increased by shRNA-VEGF and shRNA-VEGF loaded NP.

References

  • 1. Docea, A.O., Mitrut, P., Grigore, D. et al. (2012). Immunohistochemical expression of TGF beta (TGF-beta), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom J Morphol Embryol, 53(3), 683-92. https://dx.doi.org/10.23188426
  • 2. Salehi, B., Jornet, P.L., Lopez, E.P.F. et al. (2019). Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules, 9(3), 1-23. https://dx.doi.org/10.3390/biom9030106.
  • 3. Sharifi-Rad, M., Kumar, N.V.A., Zucca, P. et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 11, 1-21. https://dx.doi.org/10.3389/fphys.2020.00694.
  • 4. Ghad, A., Mahjoub, S., Tabandeh, F. et al. (2014). Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Caspian J Intern Med., 5, 156–61. https://dx.doi.org/10.PMC4143737
  • 5. Park, W., Heo, Y.J., Han, D.K. (2018). New opportunities for nanoparticles in cancer immunotherapy. Biomater Res., 22, 24-33. https://dx.doi.org/10.1186/s40824-018-0133-y.
  • 6. Jovčevska, I., Muyldermans, S. (2020). The therapeutic potential of nanobodies. BioDrugs Clin Immunotherap Biopharm Gene Therapy, 34(1), 11-26. https://dx.doi.org/10.1007/s40259-019-00392-z.
  • 7. Zitvogel, L., Apetoh, L., Ghiringhelli, F. et al. (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol, 8(1), 59-73. https://dx.doi.org/doi: 10.1038/nri2216.
  • 8.Wang, R., Billone, P.S., Mullett, W.M. (2013). Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater, 1-12. https://doi.org/10.1155/2013/629681
  • 9. Adair, J.H., Parette, M.P., Altinoglu, E.I. (2010). Nanoparticulate alternatives for drug delivery. ACS Nano., 4(9), 4967-4970. https://dx.doi.org/doi: 10.1021/nn102324e.
  • 10. Altinoglu, E.I., Adair, J.H. (2010). Near infrared imaging with nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, 2(5), 461-477. https://dx.doi.org/doi:10.1002/wnan.77
  • 11. Wang, X., Zhang, H., Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2, 141-60. https://dx.doi.org/doi:10.20517/cdr.2019.10
  • 12. Mansoori, B., Mohammadi, A., Davudian, S. et al. (2017) The different mechanisms of cancer drug resistance: a brief review. Tabriz Univ. Med. Sci., 7, 339-48. https://dx.doi.org/doi:10.15171/apb.2017.041
  • 13. Longacre, M., Snyder, N., Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers, 6, 1769-92. https://dx.doi.org/doi:10.3390/cancers6031769
  • 14. Xue, X., Liang, X.J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer, 31, 100-109. https://dx.doi.org/doi:10.5732/cjc.011.10326
  • 15. Robey, R.W., Pluchino, K.M., Hall, M.D. et al. (2018). Revisiting the role of efflux pumps in multidrug-resistant cancer. Nat Rev Cancer, 18, 452-64. https://dx.doi.org/doi: 10.1038/s41568-018-0005-8.
  • 16. Singh, A., Benjakul, S., Prodpran, T. (2019). Ultrasound assisted extraction of chitosan from squid pen: molecular characterization and fat binding capacity. J Food Sci., 84, 224-234. https://dx.doi.org/doi: 10.1111/1750-3841.14439.
  • 17. Mittal, A., Singh, A., Benjakul, S. et al. (2020). Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocol, 111, 1-10. https://doi.org/10.1016/j.foodhyd.2020.106384
  • 18. Demoulin, J., Essaqhir, A. (2014). PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev, 25, 273-83. https://dx.doi.org/doi: 10.1016/j.cytogfr.2014.03.003.
  • 19. Urban-Klein, B., Werth, S., Abuharbeid, S. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther, 12, 461-6. https://dx.doi.org/doi:10.1038/sj.gt.3302425
  • 20. Howard, K.A., Rahbek, U.L., Liu, X. et al. (2006). RNA intereference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther, 14, 476-84. https://dx.doi.org/doi: 10.1016/j.ymthe.2006.04.010.
  • 21. Howard, K.A., Paludan, S.R., Behlke, MA. et al. (2009). siRNA nanoparticle–mediated TNF-alpha knockdown in peritoneal macrophages for antiinflammatory treatment in a murine arthritis model. Mol Ther, 17, 162-8. https://dx.doi.org/doi:10.1038/mt.2008.220
  • 22. Singh, A., Benjakul, S., Prodpran, T. (2019). Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Prod Process Nutri., 1, 1-10. https://doi.org/10.1186/s43014-019-0005-4
  • 23. Li, J., Cai, C., Ja, L. (2018). Chitosan-Based Nanomaterials for Drug Delivery. Molecules, 23, 2661. https://dx.doi.org/doi:10.3390/molecules23102661.
  • 24. Bhattarai, N., Gunn, J., Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev., 62(1), 83–99. https://dx.doi.org/doi:10.1016/j.addr.2009.07.019.
  • 25. Torabi, N., Dobakhti, F., Faghihzadeh S. et al. (2018). In vitro and in vivo effects of chitosan-praziquantel and chitosan-albendazole nanoparticles on Echinococcus granulosus Metacestodes. Parasitol Res., 117, 2015–2023. https://dx.doi.org/doi:10.1007/s00436
  • 26. Jhaveri, J., Raichura, Z., Khan, T. et al. (2021). Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules, 26,272.https://dx.doi.org/doi:10.3390/molecules26020272
  • 27. Cheimonidi, C., Samara, P., Polychronopoulos, P. et al. (2018). Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol, 16, 169-178. https://dx.doi.org/doi: 10.1016/j.redox.2018.02.015.
  • 28. Tavana, E., Mollazadeh, H., Mohtashami, E. et al. (2020). shRNA-VEGF: A promising phytochemical for the treatment of glioblastoma multiforme. BioFactors, 46, 356-366. https://dx.doi.org/doi: 10.1002/biof.1605.
  • 29. Taskin, T., Dogan, M., Yilmaz, B.N. et al. (2020). Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatalysis and Agricultural Biotechnology, 27, 1-7. 101670. https://doi.org/10.1016/j.bcab.2020.101670
  • 30. Calvo, P., Remunan-Lopez, C., Vila-Jato, JL. et al. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci., 63(1), 125-132. https://doi.org/10.1002/(SICI)1097-4628
  • 31. Wikanta, T., Erizal, T., Tjahyono, T. et al. (2012). Synthesis of polyvinyl alcohol-chitosan hydrogel and study of its swelling and antibacterial properties. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 7(1), 1-10.
  • 32. Purbowatiningrum, N., Ismiyarto, E.F. (2017). Cinnamomum casia Extract Encapsulated Nanochitosan as Antihypercholesterol. IOP Conf Ser: Mater Sci Eng., 172, 012035. https://dx.doi.org/doi:10.1088/1757-899X/172/1/012035
  • 33. Han, H.J., Lee, J.S., Park, S.A. et al. (2015). Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids and Surfaces B: Biointerfaces, 130, 93-100. https://dx.doi.org/doi: 10.1016/j.colsurfb.2015.03.050
  • 34. Keawchaoon, L., Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B: Biointerfaces, 84, 163-171. https://dx.doi.org/doi: 10.1016/ j.colsurfb. 2010.12.031
  • 35. Mohammadi, A., Hashemi, M., Hosseini, S. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol., 110, 203-213. https://doi.org/10.1016/j.postharvbio.2015.08.019
  • 36. Taşkın, D., Doğan, M., Ermanoğlu, M. et al. (2021). Achillea goniocephala Extract Loaded into Nanochitosan: In Vitro Cytotoxic and Antioxidant Activity. Clinical and Experimental Health Sciences, 11(4), 659-666. https://doi.org/10.33808/clinexphealthsci.972180
  • 37. Doğan, M., Karademir, M. (2020). Effect of captopril on the oxidative damage caused by pentylenetetrazole in the SHSY-5Y human neuroblastoma cell line. Cumhuriyet Medical Journal, 42(4), 479-483. https://doi.org/10.7197/ cmj.830835
  • 38. Tang, H., Zhang, Y., Li, D. et al. (2018). Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem, 156, 190-205. https://dx.doi.org/doi: 10.1016/j.ejmech.2018.06.048.
  • 39. Chen, J. (2013). Recent advance in the studies of β-glucans for cancer therapy. Anticancer Agents Med Chem., 13, 679-80. https://dx.doi.org/doi: 10.2174/1871520611313050001
  • 40. Sachdev, E., Tabatabai, R., Roy, V. et al. (2019). PARP Inhibition in cancer: An update on clinical development. Target Oncol., 14, 657-79. https://doi.org/doi: 10.1007/s11523-019-00680-2.
  • 41. Sima, P., Richter, J., Vetvicka, V. (2019). Glucans as new anticancer agents. Anticancer Res., 39, 3373-78. https://doi.org/doi: 10.21873/anticanres.13480.
  • 42. Guo, C., Li, X., Wang, R. et al. (2016). Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2′-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep, 6, 1-9. https://doi.org/10.1038/srep32581.
  • 43. Chen, Z., Zhang, B., Gao, F. et al. (2018). Modulation of G2/M cell cycle arrest and apoptosis by luteolin in human colon cancer cells and xenografts. Oncol Lett., 15, 1559-1565. https://doi.org/10.3892/ol.2017.7475.
  • 44. Lee, S.I., Jeong, Y.J., Yu, A.R. et al. (2019). Carfilzomib enhances cisplatin-induced apoptosis in SK-NBE(2)-M17 human neuroblastoma cells. Sci Rep., 9, 1-14. https://doi.org doi: 10.1038/s41598-019-41527-0.
  • 45. Filiz, A.K., Joha, Z., Yulak, F. (2021). Mechanism of anti-cancer effect of β-glucan on HELA cell line. Bangladesh Journal of Pharmacology, 16(4), 122-128. https://doi.org doi: 10.3329/bjp.v16i4.54872
There are 45 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Articles
Authors

Murat Doğan 0000-0003-2794-0177

Publication Date September 30, 2022
Submission Date August 20, 2022
Acceptance Date September 28, 2022
Published in Issue Year 2022 Volume: 3 Issue: 3

Cite

APA Doğan, M. (2022). In vitro bioactivity and gene silencing effect of shRNA-VEGF loaded chitosan nanoparticles. Turkish Journal of Science and Health, 3(3), 236-245. https://doi.org/10.51972/tfsd.1164517








Turkish Journal of Science and Health (TFSD) 

E-mail:  tfsdjournal@gmail.com

Creative Commons Lisansı

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

18106    18107    18238 18235 1839418234 1823618237    19024   18234   19690 19305215142164821682 21909  23284 30073

27460


25763