BibTex RIS Cite

İpek atıksularından geri kazanılan serisin proteininin karakterizasyonu

Year 2015, Volume: 72 Issue: 3, 219 - 234, 01.09.2015

Abstract

Amaç: Bu çalışmanın amacı, ipek atıksularından geri kazanılan serisin proteininin özelliklerini belirlemektir. Yöntem: Orta Doğu Teknik Üniversitesi Mühendislik Bilimleri Bölümü’nde 2007-2008 yılları arasında ipek atıksuyundan membran teknolojisi ile serisin proteini geri kazanılmıştır. Protein karakterizasyon çalışması Ankara Üniversitesi Su Yönetimi Enstitüsü’nde 2012 yılında tamamlanmıştır. Geri kazanılan protein moleküler ağırlık, nem ve kül içeriği, elementel analiz ve amino asit kompozisyonu yönünden incelenmiştir. Proteinin saflaştırılması için diyaliz işlemi uygulanmıştır. Serisin kozadan hidrotermal işlemle ekstrakte edilmiştir. Geri kazanılan proteinin farklı pH değerlerinde suda çözünürlüğü belirlenmiştir. Protein tanımlanması için 2-D jel elektroforez ve MALDI-TOF analizleri kullanılmıştır. Bulgular: Geri kazanılan serisinin molekül ağırlık aralığı 40-176 kDa olarak tespit edilmiş, en yüksek fraksiyonun ise 86-96 kDa aralığında ve %79-97 oranında olduğu bulunmuştur. Geri kazanılan serisin, biyomalzeme ve membran yapmaya uygun olan yüksek-molekül ağırlıklı serisin olarak sınıflandırılmıştır. Nem ve kül içerikleri %2,8-3,9% ve %11,3-14,4 olarak bulunmuştur. Geri kazanılan serisinin elementel kompozisyonunda, C, H, N içerikleri sırasıyla %36,7-45,3; %5,4-8,8 ve %10,2-16,8 olarak bulunmuştur. Geri kazanılan serisinin özellikleri, bu çalışmada kullanılan referans serisine ve literatürde yer alan diğer serisin örneklerine oldukça benzer çıkmıştır. Çözelti pH’sı, geri kazanılan serisinin suda çözünürlüğünü belirgin bir derecede etkilemiş; bu nedenle etanolün, asitlere kıyasla daha uygun bir çökeltme ajanı olduğu gözlenmiştir. Bazı amino asitler uygulanan işlemler sırasında kaybedilmiş olsa da amino asit kompozisyonu kabul edilebilir bulunmuştur. İpek atıksuyundan geri kazanılan serisin, %28,9’luk serin içeriği ile yüksek nem tutma potansiyeline sahiptir. Sonuç: İpek atıksuyundan geri kazanılan serisin biyomedikal, kozmetik ve ilaç endüstrilerinde potansiyel uygulamalar için umut verici bir hammaddedir

References

  • 1. Masahiro S, Hideyuki Y, Norihisa K. Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutr Res, 2000; 20: 1505-11.
  • 2. Capar G, Aygun SS, Gecit MR. Treatment of silk production wastewaters by membrane processes for sericin recovery. J Membr Sci, 2008; 325: 920-31.
  • 3. Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnol Adv, 2002; 20: 91-100.
  • 4. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem, 1998; 62: 145-7.
  • 5. Oh H, Lee JY, Kim MK, Um IC, Lee KH. Refining hot-water extracted silk sericin by ethanol-induced precipitation. Int J Biol Macromol, 2011; 48: 32–7.
  • 6. Takasu Y, Yamada H, Tsubouchi K. Isolation of three main components from the cocoon of the silkworm, bombyx mori. Biosci Biotechnol Biochem, 2002; 66: 2715-18.
  • 7. Dash R, Mukherjee S, Kundu SC. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int J Biol Macromol, 2006; 38: 255–8.
  • 8. Kurioka A, Kurioka F, Yamazaki M. Characterization of sericin powder prepared from citric aciddegraded sericin polypeptides of the silkworm, bombyx mori. Biosci Biotechnol Biochem, 2004; 68: 774-80.
  • 9. Zhang YQ, Tao ML, Shen WD, Mao JP, Chen Y. Synthesis of silk sericin peptides-L-asparaginase bioconjugates and their characterization. J Chem Technol Biotechnol, 2006; 81: 136-45.
  • 10. Dash R, Ghosh SK, Kaplan DL, Kundu SC. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol B Biochem Mol Biol, 2007; 147: 129–34.
  • 11. Kundu SC, Dash BC, Dash R, Kaplan DL. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog Polym Sci, 2008; 33: 998–12.
  • 12. Lamoolphak W, De-Eknamkul W, Shotipruk A. Hydrothermal production and characterization of protein and amino acids from silk waste. Bioresource Technol, 2008; 99: 7678-85.
  • 13. Wu J, Wang Z, Xu SY. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem, 2007; 103: 1255-62.
  • 14. Wu JH, Wang Z, Xu SY. Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochem, 2008; 43: 480-7.
  • 15. Vaithanomsat P, Kitpreechavanich V. Sericin separation from silk degumming wastewater. Sep Purif Technol, 2008; 59: 129-33.
  • 16. Anghileri A, Lantto R, Kruus K, Arosio C, Freddi G. Tyrosinase catalyzed grafting of sericin peptides onto chitosan and production of protein– polysaccharide bioconjugates. J Biotechnol, 2007; 127: 508-19.
  • 17. Cortez J, Anghieri A, Bonner PLR, Griffin M, Freddi G. Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzyme Microb Technol, 2007; 40: 1698-04.
  • 18. Fabiani C, Pizzichini M, Spadoni M, Zeddita G. Treatment of wastewater from silk degumming processes for protein recovery and water reuse. Desalination, 1996; 105: 1-9.
  • 19. Capar G, Aygun SS, Gecit MR. Separation of sericin from fatty acids towards its recovery from silk degumming wastewaters. J Membr Sci, 2009; 342: 179-89.
  • 20. Kodama K. The preparation and physico-chemical properties of sericin. Biochem J, 1926; 20: 1208-22.
  • 21. Ogino M, Tanaka R, Hattori M, Yoshida T, Yokote Y, Takahashi, Interfacial behavior of fatty-acylated sericin prepared by lipase-catalyzed solid phase synthesis. Biosci Biotechnol Biochem, 2006, 70: 66-75.
  • 22. Wu U, Hettiarachchy S, Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. J Am Oil Chem Society, 1998; 75: 450-845.
  • 23. Were L, Hettiarachchy NS, Kalapathy U. Modified soy proteins with improved foaming and water hydration properties. J Food Sci, 1997; 62: 821-3.
  • 24. Chove BE, Grandison AS, Lewis MJ. Some functional properties of fractionated soy protein isolates obtained by microfiltration. Food Hydrocolloid, 2007; 21: 1379-88.
  • 25. Krieg RC, Dong Y, Schwamborn K, Knuechel R. Protein quantification and its tolerance for different interfering reagents using the BCAmethod with regard to 2D SDS PAGE. J Biochem Bioph Meth, 2005; 65: 13-9.
  • 26. Dimova N. RP-HPLC analysis of aminoacids with UVdetection. Bulg Acad Sci, 2003, 56: 75-8.
  • 27. Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL. Application of statistical design for the optimization of aminoacids separation by reversephase HPLC. Anal Biochem, 2008; 383: 93-2.
  • 28. Capar G. Separation of silkworm proteins in cocoon cooking wastewaters via nanofiltration: effect of solution pH on enrichment of sericin. J Membr Sci, 2012; 389: 509-21.
  • 29. Tao W, Li M, Xie R. Preparation and structure of porous silk sericin materials. Macromol Mater Eng, 2005; 290: 188–94.
  • 30. Huzhou Aotesi Biochemical, http://www.silkprotein.com/silk-sericin.html, last date of access: December 2014.
  • 31. American Society of Agricultural and Biological Engineers (ASABE), Thermal properties and inorganic composition of silk fiber. https:// elibrary. asabe.org/abstract.asp?aid=9235&t=2& redir=&redirType=. (last date of access: December 2014.)
  • 32. Mondal M, Trivedy K, Kumar SN. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., - a review. Caspian J Environ Sci, 2007; 5: 63-76.
  • 33. Chen X, Lam KF, Mak SF, Yeung KL. Precious metal recovery by selective adsorption using biosorbents. J Hazard Mater, 2011; 186: 902–10.
  • 34. Morrison RT, Boyd RN. Organic Chemistry. 6th ed., Prentice Hall, 1992.
  • 35. Kim SJ. Gas permeation through water-swollen sericin/PVA membranes. Master Thesis, University of Waterloo, Ontario, Canada, 2007.
  • 36. Wu MH, Yue JX, Zhang YQ. Ultrafiltration recovery of sericin from the alkaline waste of silk floss processing and controlled enzymatic hydrolysis. J Clean Prod, 2014; 76: 154-60.
  • 37. Aramwit P, Siritientong T, Kanokpanont S, Srichana T. Formulation and characterization of silk sericin– PVA scaffold crosslinked with genipin. Int J Biol Macromol, 2010, 47: 668–75.

Characterization of sericin protein recovered from silk wastewaters

Year 2015, Volume: 72 Issue: 3, 219 - 234, 01.09.2015

Abstract

Objective: This study aims to determine the characteristics of sericin protein recovered from silk wastewaters. Method: Sericin protein was recovered from silk wastewaters by membrane technology in Engineering Sciences Department of the Middle East Technical University between 2007 and 2008. The protein characterization study was completed in Ankara University Water Management Institute in 2012. The recovered protein was characterized in terms of molecular weight, moisture and ash contents, elemental and amino acid compositions. Dialysis was adopted to purify the protein. Sericin was extracted from native cocoons via hydrothermal processing. The solubility of recovered sericin samples at various pH values was determined. 2-D gel electrophoresis and MALDI-TOF analyses were used for protein identification. Results: The molecular weight range of recovered sericin was found as 40-176 kDa, with 86-96 kDa at the highest fraction of 79-97%. The recovered sericin was classifed as high-molecular weight sericin, which is suitable for making biomaterials and membranes. Moisture and ash contents were found as; 2.8-3.9% and 11.3-14.4%. In terms of elemental composition, C, H, N contents of recovered sericin were determined as; 36.7-45.3%, 5.4-8.8% and 10.2-16.8%, respectively. Properties of recovered sericin were quite similar to the reference sericin used in this study and those reported in literature. Solution pH significantly influenced the solubility of recovered sericin, so ethanol was observed to be a better precipitation agent than the acids used. Although some amino acids were lost during processing, the amino acid composition was acceptable. Sericin recovered from silk wastewater, with a serine content of 28.9%, had the potential of high moisture absorption. Conclusion: Sericin recovered from silk wastewaters is a promising raw material for potential applications in biomedical, cosmetics and pharmaceutical industries

References

  • 1. Masahiro S, Hideyuki Y, Norihisa K. Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutr Res, 2000; 20: 1505-11.
  • 2. Capar G, Aygun SS, Gecit MR. Treatment of silk production wastewaters by membrane processes for sericin recovery. J Membr Sci, 2008; 325: 920-31.
  • 3. Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnol Adv, 2002; 20: 91-100.
  • 4. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem, 1998; 62: 145-7.
  • 5. Oh H, Lee JY, Kim MK, Um IC, Lee KH. Refining hot-water extracted silk sericin by ethanol-induced precipitation. Int J Biol Macromol, 2011; 48: 32–7.
  • 6. Takasu Y, Yamada H, Tsubouchi K. Isolation of three main components from the cocoon of the silkworm, bombyx mori. Biosci Biotechnol Biochem, 2002; 66: 2715-18.
  • 7. Dash R, Mukherjee S, Kundu SC. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int J Biol Macromol, 2006; 38: 255–8.
  • 8. Kurioka A, Kurioka F, Yamazaki M. Characterization of sericin powder prepared from citric aciddegraded sericin polypeptides of the silkworm, bombyx mori. Biosci Biotechnol Biochem, 2004; 68: 774-80.
  • 9. Zhang YQ, Tao ML, Shen WD, Mao JP, Chen Y. Synthesis of silk sericin peptides-L-asparaginase bioconjugates and their characterization. J Chem Technol Biotechnol, 2006; 81: 136-45.
  • 10. Dash R, Ghosh SK, Kaplan DL, Kundu SC. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol B Biochem Mol Biol, 2007; 147: 129–34.
  • 11. Kundu SC, Dash BC, Dash R, Kaplan DL. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog Polym Sci, 2008; 33: 998–12.
  • 12. Lamoolphak W, De-Eknamkul W, Shotipruk A. Hydrothermal production and characterization of protein and amino acids from silk waste. Bioresource Technol, 2008; 99: 7678-85.
  • 13. Wu J, Wang Z, Xu SY. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem, 2007; 103: 1255-62.
  • 14. Wu JH, Wang Z, Xu SY. Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochem, 2008; 43: 480-7.
  • 15. Vaithanomsat P, Kitpreechavanich V. Sericin separation from silk degumming wastewater. Sep Purif Technol, 2008; 59: 129-33.
  • 16. Anghileri A, Lantto R, Kruus K, Arosio C, Freddi G. Tyrosinase catalyzed grafting of sericin peptides onto chitosan and production of protein– polysaccharide bioconjugates. J Biotechnol, 2007; 127: 508-19.
  • 17. Cortez J, Anghieri A, Bonner PLR, Griffin M, Freddi G. Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzyme Microb Technol, 2007; 40: 1698-04.
  • 18. Fabiani C, Pizzichini M, Spadoni M, Zeddita G. Treatment of wastewater from silk degumming processes for protein recovery and water reuse. Desalination, 1996; 105: 1-9.
  • 19. Capar G, Aygun SS, Gecit MR. Separation of sericin from fatty acids towards its recovery from silk degumming wastewaters. J Membr Sci, 2009; 342: 179-89.
  • 20. Kodama K. The preparation and physico-chemical properties of sericin. Biochem J, 1926; 20: 1208-22.
  • 21. Ogino M, Tanaka R, Hattori M, Yoshida T, Yokote Y, Takahashi, Interfacial behavior of fatty-acylated sericin prepared by lipase-catalyzed solid phase synthesis. Biosci Biotechnol Biochem, 2006, 70: 66-75.
  • 22. Wu U, Hettiarachchy S, Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. J Am Oil Chem Society, 1998; 75: 450-845.
  • 23. Were L, Hettiarachchy NS, Kalapathy U. Modified soy proteins with improved foaming and water hydration properties. J Food Sci, 1997; 62: 821-3.
  • 24. Chove BE, Grandison AS, Lewis MJ. Some functional properties of fractionated soy protein isolates obtained by microfiltration. Food Hydrocolloid, 2007; 21: 1379-88.
  • 25. Krieg RC, Dong Y, Schwamborn K, Knuechel R. Protein quantification and its tolerance for different interfering reagents using the BCAmethod with regard to 2D SDS PAGE. J Biochem Bioph Meth, 2005; 65: 13-9.
  • 26. Dimova N. RP-HPLC analysis of aminoacids with UVdetection. Bulg Acad Sci, 2003, 56: 75-8.
  • 27. Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL. Application of statistical design for the optimization of aminoacids separation by reversephase HPLC. Anal Biochem, 2008; 383: 93-2.
  • 28. Capar G. Separation of silkworm proteins in cocoon cooking wastewaters via nanofiltration: effect of solution pH on enrichment of sericin. J Membr Sci, 2012; 389: 509-21.
  • 29. Tao W, Li M, Xie R. Preparation and structure of porous silk sericin materials. Macromol Mater Eng, 2005; 290: 188–94.
  • 30. Huzhou Aotesi Biochemical, http://www.silkprotein.com/silk-sericin.html, last date of access: December 2014.
  • 31. American Society of Agricultural and Biological Engineers (ASABE), Thermal properties and inorganic composition of silk fiber. https:// elibrary. asabe.org/abstract.asp?aid=9235&t=2& redir=&redirType=. (last date of access: December 2014.)
  • 32. Mondal M, Trivedy K, Kumar SN. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., - a review. Caspian J Environ Sci, 2007; 5: 63-76.
  • 33. Chen X, Lam KF, Mak SF, Yeung KL. Precious metal recovery by selective adsorption using biosorbents. J Hazard Mater, 2011; 186: 902–10.
  • 34. Morrison RT, Boyd RN. Organic Chemistry. 6th ed., Prentice Hall, 1992.
  • 35. Kim SJ. Gas permeation through water-swollen sericin/PVA membranes. Master Thesis, University of Waterloo, Ontario, Canada, 2007.
  • 36. Wu MH, Yue JX, Zhang YQ. Ultrafiltration recovery of sericin from the alkaline waste of silk floss processing and controlled enzymatic hydrolysis. J Clean Prod, 2014; 76: 154-60.
  • 37. Aramwit P, Siritientong T, Kanokpanont S, Srichana T. Formulation and characterization of silk sericin– PVA scaffold crosslinked with genipin. Int J Biol Macromol, 2010, 47: 668–75.
There are 37 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gökşen Çapar This is me

Seylan Saniye Aygün This is me

Publication Date September 1, 2015
Published in Issue Year 2015 Volume: 72 Issue: 3

Cite

APA Çapar, G., & Aygün, S. S. (2015). Characterization of sericin protein recovered from silk wastewaters. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 72(3), 219-234.
AMA Çapar G, Aygün SS. Characterization of sericin protein recovered from silk wastewaters. Turk Hij Den Biyol Derg. September 2015;72(3):219-234.
Chicago Çapar, Gökşen, and Seylan Saniye Aygün. “Characterization of Sericin Protein Recovered from Silk Wastewaters”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 72, no. 3 (September 2015): 219-34.
EndNote Çapar G, Aygün SS (September 1, 2015) Characterization of sericin protein recovered from silk wastewaters. Türk Hijyen ve Deneysel Biyoloji Dergisi 72 3 219–234.
IEEE G. Çapar and S. S. Aygün, “Characterization of sericin protein recovered from silk wastewaters”, Turk Hij Den Biyol Derg, vol. 72, no. 3, pp. 219–234, 2015.
ISNAD Çapar, Gökşen - Aygün, Seylan Saniye. “Characterization of Sericin Protein Recovered from Silk Wastewaters”. Türk Hijyen ve Deneysel Biyoloji Dergisi 72/3 (September 2015), 219-234.
JAMA Çapar G, Aygün SS. Characterization of sericin protein recovered from silk wastewaters. Turk Hij Den Biyol Derg. 2015;72:219–234.
MLA Çapar, Gökşen and Seylan Saniye Aygün. “Characterization of Sericin Protein Recovered from Silk Wastewaters”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, vol. 72, no. 3, 2015, pp. 219-34.
Vancouver Çapar G, Aygün SS. Characterization of sericin protein recovered from silk wastewaters. Turk Hij Den Biyol Derg. 2015;72(3):219-34.