BibTex RIS Cite

Kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılması

Year 2016, Volume: 73 Issue: 4, 303 - 310, 01.12.2016

Abstract

Amaç: Bu çalışmanın amacı, eş zamanlı olarak bakılan tam kan, 24 saatlik idrar ve saç kurşun düzeylerinin birbiri ile karşılaştırılması ve kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılmasıdır.Yöntemler: Ankara Meslek Hastalıkları yılları Hastanesi’ne periyodik muayene amacıyla başvuran 436 işçiye ait veriler değerlendirildi. Tam kan, 24 saatlik idrar ve saç kurşun düzeyleri eş zamanlı olarak bakılmış kişiler çalışmaya dâhil edildi. Kişiler iki farklı tam kan maruziyet düzeyine 10 μg/dL ve 30 μg/dL göre değerlendirildi.Bulgular: Tam kan maruziyet sınırlarına göre sınıflandırılan grupların 24 saatlik idrar ve saç kurşun düzeyi birbirinden farklı ve istatistiksel olarak anlamlı idi p

References

  • 1. Xu J, Lian LJ, Wu C, Wang XF, Fu WY, Xu LH. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol, 2008;46(1):1488-94.
  • 2. Malekirad AA, Oryan S, Fani A, Babapor V, Hashemi M, Baeeri M, et al. Study on clinical and biochemical toxicity biomarkers in a zinc-lead mine workers. Toxicol Ind Health, 2010;26(6):331-7.
  • 3. Agency for Toxic Substance and Disease Registry (ATSDR). Toxicological profile for lead-update. Atlanta: U.S. Department of Health & Human Services, Public Health Service, 2007.
  • 4. Bressler J, Kim KA, Chakraborti T, Goldstein G. Molecular mechanisms of lead neurotoxicity. Neurochem Res, 1999;24(4):595-600.
  • 5. Bradbury MW, Deane R. Permeability of the blood brain barrier to lead. Neurotoxicology, 1993;14(2- 3):131-6.
  • 6. Bressler JP, Goldstein GW. Mechanisms of lead neurotoxicity. Biochem Pharmacol, 1991;41(4):479- 84.
  • 7. Patrick Lyn. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Med Rev, 2006;11(2):114.
  • 8. Wedeen RP, Mallik DK, Batuman V. Detection and treatment of occupational lead nephropathy. Arch Intern Med, 1979;139(1):53–57.
  • 9. Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 2003;126(1): 5–19.
  • 10. Garza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit, 2006;12(3): RA57–65.
  • 11. R.R. Lauwerys and P. Hoet. Biological monitoring of exposure to inorganic and organometallic substances. In: R.R. Lauwerys, P. Hoet, eds. Industrial Chemical Exposure: Guidelines for Biological Monitoring. Florida. Lewis Publishers, 2001:21-280.
  • 12. Fischbein A. Occupational and environmental exposure to lead. In: W.M.Rom, ed. Environmental and Occupational Medicine. Philadelphia. LippincottRaven Publisher, 1998;973-996.
  • 13. Barbosa F Jr1, Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ health perspect, 2005;113(12):1669-74.
  • 14. http://www.mayomedicallaboratories.com/ testcatalog/Clinical+and+Interpretive/8495 (erişim tarihi: 07.01.2017)
  • 15. Hopfer M.S. General clinical tests, heavy metals. In: Alan H. B. Wu, ed. Tietz Clinical Guide to Laboratory Tests. California. WB Saunders Company, 2005;658.
  • 16. American Conference of Governmental Industrial Hygienists. Threshold Limit Values for Chemical Substancesand Physical Agents & Biological Exposure Indices. Cincinnati, OH: Ameican Conference of Governmental Industrial Hygienists; 2011.
  • 17. Carolyn G. Lead Exposure in Pregnancy: A Review of the Literature and Argument for Routine Prenatal Screening. Obstet Gynecol Surv, 2001;56(4): 231-238.
  • 18. Centers for Disease Control and Prevention (CDC). Screening young children for lead poisoning: guidance for state and local public health officials. Atlanta, GA CDC, 1997.
  • 19. Hirata M1, Yoshida T, Miyajima K, Kosaka H, Tabuchi T. Correlation between lead in plasma and other indicators of lead exposure among lead exposed workers. Int Arch Occup Environ Health, 1995;68(1):58–63.
  • 20. Tsaih SW, Schwartz J, Lee ML, Amarasiriwardena C, Aro A, Sparrow D, et al. The independent contribution of bone and erythrocyte lead to urinary lead among middleaged and elderly men: The normative aging study. Environ Health Perspect, 1999;107(5):391–396.
  • 21. M. Saitoh, M. Uzuka, M. Sakamoto. Rate of hair growth. In: W. Montagna and R.L. Dobson, eds. Advantages in Biology of Skin. Oxford. Pergamon Press, 1969:183.
  • 22. A. Taylor. Usefulness of measurements of trace elements in hair. Ann. Clin. Biochem, 1986; 23(4): 364-78.
  • 23. Deeming SB, Weber CW. Hair analysis of trace minerals in human subjects as influenced by age, sex, and contraceptive drugs. Am J Clin Nutr, 1978;31(7):1175–1180.
  • 24. Foo SC, Khoo NY, Heng A, Chua LH, Chia SE, et al. Metals in hair as biological indices for exposure. Int Arch Occup Environ Health, 1993;65(1):83-6.
  • 25. Gil F, Hernández AF, Márquez C, Femia P, Olmedo P, Lopez-Guardino O, et al. Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ, 2011;409(6):1172-80.
  • 26. Sanna E, De Micco A, Vallascas E. Evaluation of association between biomarkers of lead exposure in Sardinian children (Italy). Biol Trace Elem Res, 2011;143(3):1383-92.
  • 27. Esteban E, Rubin CH, Jones RL, Noonan G. Hair and blood as substrates for screening children for lead poisoning. Arch Environ Health, 1999; 54(6):436-40.

Investigation of the hair and urine samples’ utility for screening lead poisoning

Year 2016, Volume: 73 Issue: 4, 303 - 310, 01.12.2016

Abstract

Objective: The aim of this study is to compare whole blood, 24 hour urine and hair lead levels which were measured concurrently, and evaluate the utility of hair and urine samples for screening of lead exposure.Methods: The data of 436 workers who referred to Ankara Occupational Diseases Hospital between 2010 and 2014 for periodic examination were evaluated. People who examined whole blood, 24 hour urine and hair lead levels concurrently were included in this study. People were evaluated according to two different whole blood exposure levels 10 μg/dL and 30 μg/dL .Results: 24 hour urine and hair lead levels of the groups classified according to whole blood exposure limits were different from each other and statistically significant p

References

  • 1. Xu J, Lian LJ, Wu C, Wang XF, Fu WY, Xu LH. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol, 2008;46(1):1488-94.
  • 2. Malekirad AA, Oryan S, Fani A, Babapor V, Hashemi M, Baeeri M, et al. Study on clinical and biochemical toxicity biomarkers in a zinc-lead mine workers. Toxicol Ind Health, 2010;26(6):331-7.
  • 3. Agency for Toxic Substance and Disease Registry (ATSDR). Toxicological profile for lead-update. Atlanta: U.S. Department of Health & Human Services, Public Health Service, 2007.
  • 4. Bressler J, Kim KA, Chakraborti T, Goldstein G. Molecular mechanisms of lead neurotoxicity. Neurochem Res, 1999;24(4):595-600.
  • 5. Bradbury MW, Deane R. Permeability of the blood brain barrier to lead. Neurotoxicology, 1993;14(2- 3):131-6.
  • 6. Bressler JP, Goldstein GW. Mechanisms of lead neurotoxicity. Biochem Pharmacol, 1991;41(4):479- 84.
  • 7. Patrick Lyn. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Med Rev, 2006;11(2):114.
  • 8. Wedeen RP, Mallik DK, Batuman V. Detection and treatment of occupational lead nephropathy. Arch Intern Med, 1979;139(1):53–57.
  • 9. Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 2003;126(1): 5–19.
  • 10. Garza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit, 2006;12(3): RA57–65.
  • 11. R.R. Lauwerys and P. Hoet. Biological monitoring of exposure to inorganic and organometallic substances. In: R.R. Lauwerys, P. Hoet, eds. Industrial Chemical Exposure: Guidelines for Biological Monitoring. Florida. Lewis Publishers, 2001:21-280.
  • 12. Fischbein A. Occupational and environmental exposure to lead. In: W.M.Rom, ed. Environmental and Occupational Medicine. Philadelphia. LippincottRaven Publisher, 1998;973-996.
  • 13. Barbosa F Jr1, Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ health perspect, 2005;113(12):1669-74.
  • 14. http://www.mayomedicallaboratories.com/ testcatalog/Clinical+and+Interpretive/8495 (erişim tarihi: 07.01.2017)
  • 15. Hopfer M.S. General clinical tests, heavy metals. In: Alan H. B. Wu, ed. Tietz Clinical Guide to Laboratory Tests. California. WB Saunders Company, 2005;658.
  • 16. American Conference of Governmental Industrial Hygienists. Threshold Limit Values for Chemical Substancesand Physical Agents & Biological Exposure Indices. Cincinnati, OH: Ameican Conference of Governmental Industrial Hygienists; 2011.
  • 17. Carolyn G. Lead Exposure in Pregnancy: A Review of the Literature and Argument for Routine Prenatal Screening. Obstet Gynecol Surv, 2001;56(4): 231-238.
  • 18. Centers for Disease Control and Prevention (CDC). Screening young children for lead poisoning: guidance for state and local public health officials. Atlanta, GA CDC, 1997.
  • 19. Hirata M1, Yoshida T, Miyajima K, Kosaka H, Tabuchi T. Correlation between lead in plasma and other indicators of lead exposure among lead exposed workers. Int Arch Occup Environ Health, 1995;68(1):58–63.
  • 20. Tsaih SW, Schwartz J, Lee ML, Amarasiriwardena C, Aro A, Sparrow D, et al. The independent contribution of bone and erythrocyte lead to urinary lead among middleaged and elderly men: The normative aging study. Environ Health Perspect, 1999;107(5):391–396.
  • 21. M. Saitoh, M. Uzuka, M. Sakamoto. Rate of hair growth. In: W. Montagna and R.L. Dobson, eds. Advantages in Biology of Skin. Oxford. Pergamon Press, 1969:183.
  • 22. A. Taylor. Usefulness of measurements of trace elements in hair. Ann. Clin. Biochem, 1986; 23(4): 364-78.
  • 23. Deeming SB, Weber CW. Hair analysis of trace minerals in human subjects as influenced by age, sex, and contraceptive drugs. Am J Clin Nutr, 1978;31(7):1175–1180.
  • 24. Foo SC, Khoo NY, Heng A, Chua LH, Chia SE, et al. Metals in hair as biological indices for exposure. Int Arch Occup Environ Health, 1993;65(1):83-6.
  • 25. Gil F, Hernández AF, Márquez C, Femia P, Olmedo P, Lopez-Guardino O, et al. Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ, 2011;409(6):1172-80.
  • 26. Sanna E, De Micco A, Vallascas E. Evaluation of association between biomarkers of lead exposure in Sardinian children (Italy). Biol Trace Elem Res, 2011;143(3):1383-92.
  • 27. Esteban E, Rubin CH, Jones RL, Noonan G. Hair and blood as substrates for screening children for lead poisoning. Arch Environ Health, 1999; 54(6):436-40.
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Ceylan Bal This is me

Murat Büyükşekerci This is me

Müjgan Ercan This is me

Oya Torun Güngör This is me

Engin Tutkun This is me

Fatma Meriç Yılmaz This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 73 Issue: 4

Cite

APA Bal, C., Büyükşekerci, M., Ercan, M., Güngör, O. T., et al. (2016). Kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılması. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 73(4), 303-310.
AMA Bal C, Büyükşekerci M, Ercan M, Güngör OT, Tutkun E, Yılmaz FM. Kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılması. Turk Hij Den Biyol Derg. December 2016;73(4):303-310.
Chicago Bal, Ceylan, Murat Büyükşekerci, Müjgan Ercan, Oya Torun Güngör, Engin Tutkun, and Fatma Meriç Yılmaz. “Kurşun Maruziyetinin taranmasında Saç Ve Idrar Numunelerinin kullanılabilirliğinin araştırılması”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 73, no. 4 (December 2016): 303-10.
EndNote Bal C, Büyükşekerci M, Ercan M, Güngör OT, Tutkun E, Yılmaz FM (December 1, 2016) Kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılması. Türk Hijyen ve Deneysel Biyoloji Dergisi 73 4 303–310.
IEEE C. Bal, M. Büyükşekerci, M. Ercan, O. T. Güngör, E. Tutkun, and F. M. Yılmaz, “Kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılması”, Turk Hij Den Biyol Derg, vol. 73, no. 4, pp. 303–310, 2016.
ISNAD Bal, Ceylan et al. “Kurşun Maruziyetinin taranmasında Saç Ve Idrar Numunelerinin kullanılabilirliğinin araştırılması”. Türk Hijyen ve Deneysel Biyoloji Dergisi 73/4 (December 2016), 303-310.
JAMA Bal C, Büyükşekerci M, Ercan M, Güngör OT, Tutkun E, Yılmaz FM. Kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılması. Turk Hij Den Biyol Derg. 2016;73:303–310.
MLA Bal, Ceylan et al. “Kurşun Maruziyetinin taranmasında Saç Ve Idrar Numunelerinin kullanılabilirliğinin araştırılması”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, vol. 73, no. 4, 2016, pp. 303-10.
Vancouver Bal C, Büyükşekerci M, Ercan M, Güngör OT, Tutkun E, Yılmaz FM. Kurşun maruziyetinin taranmasında saç ve idrar numunelerinin kullanılabilirliğinin araştırılması. Turk Hij Den Biyol Derg. 2016;73(4):303-10.