BibTex RIS Cite

Türkiye’de ulusal antimikrobiyal direnç surveyans sisteminin ilk sonuçları

Year 2018, Volume: 75 Issue: 4, 323 - 458, 01.12.2018

Abstract

Amaç: Antimikrobiyal direnç ile mücadele için bazı önlemler alınmalıdır, mevcut durumun saptanması da bunlardan biridir. Türkiye’de ulusal antimikrobiyal direnç surveyans sistemi bu hedefle kurulmuştur. Ampirik tedaviyi desteklemek, antimikrobiyal kullanım politikaları oluşturmak, rehber kitaplara veri sağlamak, alınmış olan önlemlerin etkinliğini değerlendirmek için başlangıç bilgilerini sağlamak amaçlanmıştır. Yöntem: Elli beş hastaneden, kan ve beyin omurilik sıvısından izole edilen Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae ve Pseudomonas aeruginosa izolatlarının direnç verileri toplanmıştır. Antimikrobiyaller ve test yöntemleri uluslararası surveyans sitemleri ile uyumlu olacak şekilde seçilmiştir. Toplanan veriler WHONET programı ile analiz edilmiştir. Bulgular: S. aureus n=1437 ; metisilin direnci %31,5, rifampin, linezolid ve vankomisin direnci sırası ile %65,3; %2,3 ve %0,0, bulunmuştur. E. faecalis n=760 ampisilin direnci %9,7, linezolid, vankomisin, teikoplanin direnci %1’in altında, yüksek düzey YD aminoglikozid %30 civarında bulunmuştur. E. faecium n=756 ampisilin direnci %88,1; linezolid ve teikoplanin %1’den az, vankomisin %17, YD aminoglikozid %50 civarında bulunmuştur. S. pneumoniae n=128 nonmenenjit sınır değerler için eritromisin %32 dışında tüm antimikrobiyaller için direnç %5,2’den düşüktür, menejit sınır değerler için direnç %14,3-44,8’a yükselmiştir. E. coli 2280 ve K. pneumoniae 1307 için genişlemiş spektrumlu beta-laktamaz GSBL direnci sırası ile %51,6 ve %54,0 bulunmuştur. P. aeruginosa 825 direnci %8,4 amikacin ve %36,4 piperacillin arasında değişmektedir. Sonuç:Direnç Türkiye’ye yakın coğrafyadaki ülkelerden yüksek bulunmuş ve zaman içinde artış göstermiş olup bununla mücadele için politikalar geliştirmek gerektiğine işaret etmektedir. Ayrıca, alınan önlemlerin yararlılığını izlemek için de sonuçlar değerli olacaktır.

References

  • 1. Massignani M, Lomas H, Battaglia G. Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery. In: Carusco, ed. F.Modern Techniques for Nano- and Microreactors/-reactions. Heidelberg: Springer, 2010: 115-54.
  • 2. Alberts B, Johnson A, Lewıs J, Walter P, Raff M, Roberts K. Molecular Biology of the Cell 4th ed. New York: Routledge, 2002.
  • 3. Ahmed F, Pakunlu R, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. Journal of Controlled Release, 2006; 116(2): 150-8.
  • 4. Lomas H, Du J, Canton I, Madsen J, Warren N, Armes SP, et al. Efficient encapsulation of plasmid DNA in pH-sensitive PMPC-PDPA polymersomes: Study of the effect of PDPA block length on copolymer-DNA binding affinity. Macromolecular Bioscience, 2010; 10(5): 513-30.
  • 5. Rameez S, Alosta H, Palmer AF. Biocompatible and biodegradable polymersome encapsulated hemoglobin: A potential oxygen carrier. Bioconjugate Chemistry, 2008; 19(5): 1025-32.
  • 6. Gaitzsch J, Appelhans D, Wang L, Battaglia G, Voit B. Synthetic bio-nanoreactor: Mechanical and chemical control of polymersome membrane permeability. Angewandte Chemie - International Edition, 2012; 51(18): 4448-51.
  • 7. Huang WC, Chen YC, Hsu YH, Hsieh WY, Chıu HC. Development of a diagnostic polymersome system for potential imaging delivery. Colloids and Surfaces B: Biointerfaces, 2015; 128: 67-76.
  • 8. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, et al. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999; 284: 1143-6.
  • 9. Bozkır A, Kocyiğit S. An investigation of physical and chemical stabilities of liposomes. Journal of Faculty of Pharmacy of Ankara University, 1995; 24(1): 42-52.
  • 10. Ayen WY, Garkhal K, Kumar N. Doxorubicinloaded (PEG)-PLA nanopolymersomes: effect of solvents and process parameters on formulation development and in vitro study. Molecular Pharmaceutics, 2011; 8(2): 466-78.
  • 11. Shen H, Eisenberg A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/Dioxane/H2O. The Journal of Physical Chemistry B, 1999; 103(44): 9473-87.
  • 12. Axthelm F, Casse O, Koppenol WH, Nauser T, Meier W, Palivan CG. Antioxidant nanoreactor based on superoxide dismutase encapsulated in superoxide-permeable vesicles. The Jounal of Physical Chemistry B, 2008; 112(28): 8211-7.
  • 13. Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA. Generation of polymerosomes from double-emulsions. Langmuir, 2005; 21(20): 9183-6.
  • 14. Ho CS, Kim JW, Weitz DA. Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. Journal of the American Chemical Society, 2008; 130(29): 9543-9.
  • 15. Habault D, Dery A, Leng J, Lecommandoux S, Le Meins JF, Sandre O. Droplet microfluidics to prepare magnetic polymer vesicles and to confine the heat in magnetic hyperthermia. IEEE Transactions on Magnetics, 2013; 49(1): 182-90.
  • 16. Thiele J, Steinhauser D, Pfohl T, Förster S. Preparation of monodisperse block copolymer vesicles via flow focusing in microfluidics. Langmuir, 2010; 26(9): 6860-3.
  • 17. Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip, 2012; 12(4): 802- 7.
  • 18. Du J, Tang Y, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. Journal of the American Chemical Society, 2005; 127(51): 17982-3.
  • 19. Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K. Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: A Physiologically available oxygen carrier. Angewandte Chemie International Edition, 2007; 46(32): 6085-8.
  • 20. Wan WM, Hong CY, Pan CY. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem, Commun; 2009; (39): 5883-5.
  • 21. Battaglia G, Ryan AJ. Pathways of polymeric vesicle formation. Journal of Physical Chemistry B, 2006; 110(21): 10272-9.
  • 22. Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: Correlations with PEG molecular weight. Journal of Controlled Release, 2003; 90(3): 323-34.
  • 23. Angelova MI, Dimitrov DS. Liposome electroformation. Faraday Discussions of the Chemical Society, 1986; 81(0): 303-11.
  • 24. Lee James CM, Bermudez H, Discher BM, Sheehan MA, Won YY, Bates FS, et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnology and Bioengineering, 2001; 73(2): 135-45.
  • 25. O’Neil CP, Suzuki T, Demurtas D, Finka A, Hubbell JA. A novel method for the encapsulation of biomolecules into polymersomes via direct hydration. Langmuir, 2009; 25(16): 9025-9.
  • 26. Ahmed F, Discher DE. Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered controlled release vesicles. Journal of Controlled Release, 2004; 96(1): 37-53.
  • 27. Geng Y, Discher DE. Visualization of degradable worm micelle breakdown in relation to drug release. Polymer, 2006; 47(7): 2519-25.
  • 28. Balasubramanian V, Herranz-Blanco B, Almeida PV, Hirvonen J, Santos HA. Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. Progress in Polymer Science, 2016; 60: 51-85.
  • 29. Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: Challenges and solutions. Drug Discovery Today, 2003; 8(6): 259- 66.
  • 30. Liu G, Ma S, Li S, Cheng R, Meng F, Liu H, et al. The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials, 2010; 31(29): 7575- 85.
  • 31. Barnier Quer C, Robson Marsden H, Romeijn S, Zope H, Kros A, Jiskoot W. Polymersomes enhance the immunogenicity of influenza subunit vaccine. Polymer Chemistry, 2011; 2(7): 1482-5.
  • 32. Scott Ea, Stano A, Gillard M, Maio-Liu AC, Swartz MA, Hubbell JA. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials, 2012; 33(26): 6211-9.
  • 33. Pang Z, Gao H, Yu Y, Guo L, Chen J, Pan S, Ren J, Wen Z, Jıang X. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrinconjugated biodegradable polymersomes loaded with doxorubicin. Bioconjugate Chemistry, 2011; 22(6): 1171-80.
  • 34. Huang J, Bonduelle C, Thévenot J, Lecommandoux S, Heise A. Biologically active polymersomes from amphiphilic glycopeptides. Journal of the American Chemical Society, 2012; 134(1): 119-22.
  • 35. Lee JS, Groothuıs T, Cusan C, Mink D, Feijen J. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials, 2011; 32(34): 9144-53.
  • 36. Pangburn TO, Bates FS, Kokkoli E. Polymersomes functionalized via “click” chemistry with the fibronectin mimetic peptides PR_b and GRGDSP for targeted delivery to cells with different levels of α5β1 expression. Soft Matter, 2012; 8(16): 4449-61.
  • 37. Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, et al. Biocompatible functionalization of polymersome surfaces: A new approach to surface immobilization and cell targeting using polymersomes. Journal of the American Chemical Society, 2011; 133(12): 4476-83.
  • 38. Robbins GP, Saunders RL, Haun JB, Rawson J, Therien MJ, Hammer DA. Tunable leukopolymersomes that adhere specifically to inflammatory markers. Langmuir, 2010; 26(17): 14089-96.
  • 39. Ghoroghchian PP, Frail PR, Li G, Zupancich JA, Bates FS, Hammer DA, et al. Controlling bulk optical properties of emissive polymersomes through intramembranous polymer-fluorophore interactions. Chemistry of materials : a publication of the American Chemical Society, 2007; 19(6): 1309-18.
  • 40. Massignani M, Canton I, Sun T, Hearnden V, Macneil S, Blanazs A, Armes SP, Lewis A, Battaglıa G. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. Plos One, 2010; 5(5): e10459.
  • 41. Duncan TV, Ghoroghchian PP, Rubtsov IV, Hammer DA, Therien MJ. Ultrafast excited-state dynamics of nanoscale near-infrared emissive polymersomes. Journal of the American Chemical Society, 2008; 130(30): 9773-84.
  • 42. Cheng Z, Tsourkas A. Paramagnetic porous polymersomes. Langmuir, 2008; 24(15): 8169-73.
  • 43. Mueller W, Koynov K, Fischer K, Hartmann S, Pierrat S, Basché T, et al. Hydrophobic shell loading of PBb-PEO vesicles. Macromolecules, 2009; 42(1): 357- 61.
  • 44. P Stano. Synthetic biology of minimal living cells: primitive cell models and semi-synthetic cells. Systems and Synthetic Biology, 2010; 4(3): 149-56.
  • 45. Dzieciol AJ, Mann S. Designs for life: Protocell models in the laboratory. Chemical Society Reviews, 2012; 41(1): 79-85.
  • 46. Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature, 2001; 409(6818): 387-90.
  • 47. Hanczyc MM, Szostak JW. Replicating vesicles as models of primitive cell growth and division. Current Opinion in Chemical Biology, 2004; 8(6): 660-4.
  • 48. Palivan CG, Fischer-Onaca O, Delcea M, Itel F, Meier W. Protein-polymer nanoreactors for medical applications. Chemical Society Reviews, 2012; 41(7): 2800-23.
  • 49. Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences, 2007; 104(52): 20719-24.
  • 50. Messager L, Burns JR, Kim J, Cecchin D, Hindley J, Pyne AL, et al. Biomimetic hybrid nanocontainers with selective permeability. Angew Chem Int Ed Engl, 2016; 55(37): 11106-9.
  • 51. Hammer DA, Kamat NP. Towards an artificial cell. FEBS Letters, 2012; 586(18): 2882-90.
  • 52. Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, et al. Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angewandte Chemie - International Edition, 2012; 51(26): 6416-20.
  • 53. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 2003; 112(4): 453-65.
  • 54. Van Oudenaarden A, Theriot JA. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat Cell Biol, 1999; 1(8): 493-9.
  • 55. Stachowiak JC, Richmond DL, Li TH, BrochardWyart F, Fletcher DA. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab on a chip, 2009; 9(14): 2003- 9.
  • 56. Lemière J, Carvalho K, Sykes C. Cell-sized liposomes that mimic cell motility and the cell cortex. In: Jennifer, R. Wallace, eds. Methods in Cell Biology. Oxford. Academic Press. 2015: 271- 85.
  • 57. Kamat NP, Katz JS, Hammer DA. Engineering polymersome protocells. The Journal of Physical Chemistry Letters, 2011; 2(13): 1612-23.
  • 58. Joseph A, Contini C, Cecchin D, Nyberg S, RuizPerez L, Gaitzch J, et al. Chemotactic synthetic vesicles: Design and applications in bloodbrain barrier crossing. Science Advances, 2017; 3(8):e1700362.

The first results of national antimicrobial resistance surveillance system in Turkey

Year 2018, Volume: 75 Issue: 4, 323 - 458, 01.12.2018

Abstract

Objective: In order to combat with antimicrobial resistance, some measures should be taken and determination of the current status is one of them. National antimicrobial resistance surveillance system NAMRSS was established for this purpose in Turkey. It was targeted to be useful for guidence of ampirical therapy, create antimicrobial usage policies, provide data to the guidebooks, and supply initial information to evaluate the efficasy of the measures taken. Methods: Data of resistance was collected from 55 hospital, from blood and cerebrospinal fluid isolates, which were S. aureus, E. faecalis and E. faecium, S. pneumoniae, E. coli, K. pneumoniae and P. aeruginosa. The antimicrobials and test methods were chosen in accordance with international surveillance systems. The collected data was analysed by WHONET software. Results: S. aureus 1437 ; meticillin resistance was 31.5%, rifampin, linezolid and vancomycin resistance were 65.3%, 2.3%, and 0.0%, respectively. E. faecalis n=760 resistance of ampicillin was 9.7%, linezolid, vancomycin, teicoplanin were lower than 1%, high level HL aminoglycoside was around 30%. E. faecium n=756 resistance of ampicillin was 88,1%, linezolid, teicoplanin were lower than 1%, vancomycin 17%, HL aminoglycoside was around 50%. S. pneumoniae n=128 with non-meningitis breakpoints; resistance were lower than 5.2% for all antimicrobials other than erythromycin 32% , with meningitis breakpoints: resistance increased to 14,3-44,8%. E. coli 2280 and K. pneumoniae 1307 , extended spectrum beta-lactamase ESBL was 51.6% and 54.0%, respectively. P. aeruginosa 825 resistance were changed in between 8.4% amikacin and 36.4% piperacillin . Conclusion: The resistance was higher among the countries in close geographical region and increased in time, indicating the need for developing policies to combat with it. Besides, the results will also be valuable to monitor the usefulness of the measures taken.

References

  • 1. Massignani M, Lomas H, Battaglia G. Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery. In: Carusco, ed. F.Modern Techniques for Nano- and Microreactors/-reactions. Heidelberg: Springer, 2010: 115-54.
  • 2. Alberts B, Johnson A, Lewıs J, Walter P, Raff M, Roberts K. Molecular Biology of the Cell 4th ed. New York: Routledge, 2002.
  • 3. Ahmed F, Pakunlu R, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. Journal of Controlled Release, 2006; 116(2): 150-8.
  • 4. Lomas H, Du J, Canton I, Madsen J, Warren N, Armes SP, et al. Efficient encapsulation of plasmid DNA in pH-sensitive PMPC-PDPA polymersomes: Study of the effect of PDPA block length on copolymer-DNA binding affinity. Macromolecular Bioscience, 2010; 10(5): 513-30.
  • 5. Rameez S, Alosta H, Palmer AF. Biocompatible and biodegradable polymersome encapsulated hemoglobin: A potential oxygen carrier. Bioconjugate Chemistry, 2008; 19(5): 1025-32.
  • 6. Gaitzsch J, Appelhans D, Wang L, Battaglia G, Voit B. Synthetic bio-nanoreactor: Mechanical and chemical control of polymersome membrane permeability. Angewandte Chemie - International Edition, 2012; 51(18): 4448-51.
  • 7. Huang WC, Chen YC, Hsu YH, Hsieh WY, Chıu HC. Development of a diagnostic polymersome system for potential imaging delivery. Colloids and Surfaces B: Biointerfaces, 2015; 128: 67-76.
  • 8. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, et al. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999; 284: 1143-6.
  • 9. Bozkır A, Kocyiğit S. An investigation of physical and chemical stabilities of liposomes. Journal of Faculty of Pharmacy of Ankara University, 1995; 24(1): 42-52.
  • 10. Ayen WY, Garkhal K, Kumar N. Doxorubicinloaded (PEG)-PLA nanopolymersomes: effect of solvents and process parameters on formulation development and in vitro study. Molecular Pharmaceutics, 2011; 8(2): 466-78.
  • 11. Shen H, Eisenberg A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/Dioxane/H2O. The Journal of Physical Chemistry B, 1999; 103(44): 9473-87.
  • 12. Axthelm F, Casse O, Koppenol WH, Nauser T, Meier W, Palivan CG. Antioxidant nanoreactor based on superoxide dismutase encapsulated in superoxide-permeable vesicles. The Jounal of Physical Chemistry B, 2008; 112(28): 8211-7.
  • 13. Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA. Generation of polymerosomes from double-emulsions. Langmuir, 2005; 21(20): 9183-6.
  • 14. Ho CS, Kim JW, Weitz DA. Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. Journal of the American Chemical Society, 2008; 130(29): 9543-9.
  • 15. Habault D, Dery A, Leng J, Lecommandoux S, Le Meins JF, Sandre O. Droplet microfluidics to prepare magnetic polymer vesicles and to confine the heat in magnetic hyperthermia. IEEE Transactions on Magnetics, 2013; 49(1): 182-90.
  • 16. Thiele J, Steinhauser D, Pfohl T, Förster S. Preparation of monodisperse block copolymer vesicles via flow focusing in microfluidics. Langmuir, 2010; 26(9): 6860-3.
  • 17. Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip, 2012; 12(4): 802- 7.
  • 18. Du J, Tang Y, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. Journal of the American Chemical Society, 2005; 127(51): 17982-3.
  • 19. Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K. Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: A Physiologically available oxygen carrier. Angewandte Chemie International Edition, 2007; 46(32): 6085-8.
  • 20. Wan WM, Hong CY, Pan CY. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem, Commun; 2009; (39): 5883-5.
  • 21. Battaglia G, Ryan AJ. Pathways of polymeric vesicle formation. Journal of Physical Chemistry B, 2006; 110(21): 10272-9.
  • 22. Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: Correlations with PEG molecular weight. Journal of Controlled Release, 2003; 90(3): 323-34.
  • 23. Angelova MI, Dimitrov DS. Liposome electroformation. Faraday Discussions of the Chemical Society, 1986; 81(0): 303-11.
  • 24. Lee James CM, Bermudez H, Discher BM, Sheehan MA, Won YY, Bates FS, et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnology and Bioengineering, 2001; 73(2): 135-45.
  • 25. O’Neil CP, Suzuki T, Demurtas D, Finka A, Hubbell JA. A novel method for the encapsulation of biomolecules into polymersomes via direct hydration. Langmuir, 2009; 25(16): 9025-9.
  • 26. Ahmed F, Discher DE. Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered controlled release vesicles. Journal of Controlled Release, 2004; 96(1): 37-53.
  • 27. Geng Y, Discher DE. Visualization of degradable worm micelle breakdown in relation to drug release. Polymer, 2006; 47(7): 2519-25.
  • 28. Balasubramanian V, Herranz-Blanco B, Almeida PV, Hirvonen J, Santos HA. Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. Progress in Polymer Science, 2016; 60: 51-85.
  • 29. Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: Challenges and solutions. Drug Discovery Today, 2003; 8(6): 259- 66.
  • 30. Liu G, Ma S, Li S, Cheng R, Meng F, Liu H, et al. The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials, 2010; 31(29): 7575- 85.
  • 31. Barnier Quer C, Robson Marsden H, Romeijn S, Zope H, Kros A, Jiskoot W. Polymersomes enhance the immunogenicity of influenza subunit vaccine. Polymer Chemistry, 2011; 2(7): 1482-5.
  • 32. Scott Ea, Stano A, Gillard M, Maio-Liu AC, Swartz MA, Hubbell JA. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials, 2012; 33(26): 6211-9.
  • 33. Pang Z, Gao H, Yu Y, Guo L, Chen J, Pan S, Ren J, Wen Z, Jıang X. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrinconjugated biodegradable polymersomes loaded with doxorubicin. Bioconjugate Chemistry, 2011; 22(6): 1171-80.
  • 34. Huang J, Bonduelle C, Thévenot J, Lecommandoux S, Heise A. Biologically active polymersomes from amphiphilic glycopeptides. Journal of the American Chemical Society, 2012; 134(1): 119-22.
  • 35. Lee JS, Groothuıs T, Cusan C, Mink D, Feijen J. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials, 2011; 32(34): 9144-53.
  • 36. Pangburn TO, Bates FS, Kokkoli E. Polymersomes functionalized via “click” chemistry with the fibronectin mimetic peptides PR_b and GRGDSP for targeted delivery to cells with different levels of α5β1 expression. Soft Matter, 2012; 8(16): 4449-61.
  • 37. Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, et al. Biocompatible functionalization of polymersome surfaces: A new approach to surface immobilization and cell targeting using polymersomes. Journal of the American Chemical Society, 2011; 133(12): 4476-83.
  • 38. Robbins GP, Saunders RL, Haun JB, Rawson J, Therien MJ, Hammer DA. Tunable leukopolymersomes that adhere specifically to inflammatory markers. Langmuir, 2010; 26(17): 14089-96.
  • 39. Ghoroghchian PP, Frail PR, Li G, Zupancich JA, Bates FS, Hammer DA, et al. Controlling bulk optical properties of emissive polymersomes through intramembranous polymer-fluorophore interactions. Chemistry of materials : a publication of the American Chemical Society, 2007; 19(6): 1309-18.
  • 40. Massignani M, Canton I, Sun T, Hearnden V, Macneil S, Blanazs A, Armes SP, Lewis A, Battaglıa G. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. Plos One, 2010; 5(5): e10459.
  • 41. Duncan TV, Ghoroghchian PP, Rubtsov IV, Hammer DA, Therien MJ. Ultrafast excited-state dynamics of nanoscale near-infrared emissive polymersomes. Journal of the American Chemical Society, 2008; 130(30): 9773-84.
  • 42. Cheng Z, Tsourkas A. Paramagnetic porous polymersomes. Langmuir, 2008; 24(15): 8169-73.
  • 43. Mueller W, Koynov K, Fischer K, Hartmann S, Pierrat S, Basché T, et al. Hydrophobic shell loading of PBb-PEO vesicles. Macromolecules, 2009; 42(1): 357- 61.
  • 44. P Stano. Synthetic biology of minimal living cells: primitive cell models and semi-synthetic cells. Systems and Synthetic Biology, 2010; 4(3): 149-56.
  • 45. Dzieciol AJ, Mann S. Designs for life: Protocell models in the laboratory. Chemical Society Reviews, 2012; 41(1): 79-85.
  • 46. Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature, 2001; 409(6818): 387-90.
  • 47. Hanczyc MM, Szostak JW. Replicating vesicles as models of primitive cell growth and division. Current Opinion in Chemical Biology, 2004; 8(6): 660-4.
  • 48. Palivan CG, Fischer-Onaca O, Delcea M, Itel F, Meier W. Protein-polymer nanoreactors for medical applications. Chemical Society Reviews, 2012; 41(7): 2800-23.
  • 49. Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences, 2007; 104(52): 20719-24.
  • 50. Messager L, Burns JR, Kim J, Cecchin D, Hindley J, Pyne AL, et al. Biomimetic hybrid nanocontainers with selective permeability. Angew Chem Int Ed Engl, 2016; 55(37): 11106-9.
  • 51. Hammer DA, Kamat NP. Towards an artificial cell. FEBS Letters, 2012; 586(18): 2882-90.
  • 52. Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, et al. Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angewandte Chemie - International Edition, 2012; 51(26): 6416-20.
  • 53. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 2003; 112(4): 453-65.
  • 54. Van Oudenaarden A, Theriot JA. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat Cell Biol, 1999; 1(8): 493-9.
  • 55. Stachowiak JC, Richmond DL, Li TH, BrochardWyart F, Fletcher DA. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab on a chip, 2009; 9(14): 2003- 9.
  • 56. Lemière J, Carvalho K, Sykes C. Cell-sized liposomes that mimic cell motility and the cell cortex. In: Jennifer, R. Wallace, eds. Methods in Cell Biology. Oxford. Academic Press. 2015: 271- 85.
  • 57. Kamat NP, Katz JS, Hammer DA. Engineering polymersome protocells. The Journal of Physical Chemistry Letters, 2011; 2(13): 1612-23.
  • 58. Joseph A, Contini C, Cecchin D, Nyberg S, RuizPerez L, Gaitzch J, et al. Chemotactic synthetic vesicles: Design and applications in bloodbrain barrier crossing. Science Advances, 2017; 3(8):e1700362.
There are 58 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nilay Çöplü This is me

Publication Date December 1, 2018
Published in Issue Year 2018 Volume: 75 Issue: 4

Cite

APA Çöplü, N. (2018). The first results of national antimicrobial resistance surveillance system in Turkey. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 75(4), 323-458.
AMA Çöplü N. The first results of national antimicrobial resistance surveillance system in Turkey. Turk Hij Den Biyol Derg. December 2018;75(4):323-458.
Chicago Çöplü, Nilay. “The First Results of National Antimicrobial Resistance Surveillance System in Turkey”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 75, no. 4 (December 2018): 323-458.
EndNote Çöplü N (December 1, 2018) The first results of national antimicrobial resistance surveillance system in Turkey. Türk Hijyen ve Deneysel Biyoloji Dergisi 75 4 323–458.
IEEE N. Çöplü, “The first results of national antimicrobial resistance surveillance system in Turkey”, Turk Hij Den Biyol Derg, vol. 75, no. 4, pp. 323–458, 2018.
ISNAD Çöplü, Nilay. “The First Results of National Antimicrobial Resistance Surveillance System in Turkey”. Türk Hijyen ve Deneysel Biyoloji Dergisi 75/4 (December 2018), 323-458.
JAMA Çöplü N. The first results of national antimicrobial resistance surveillance system in Turkey. Turk Hij Den Biyol Derg. 2018;75:323–458.
MLA Çöplü, Nilay. “The First Results of National Antimicrobial Resistance Surveillance System in Turkey”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, vol. 75, no. 4, 2018, pp. 323-58.
Vancouver Çöplü N. The first results of national antimicrobial resistance surveillance system in Turkey. Turk Hij Den Biyol Derg. 2018;75(4):323-458.