BibTex RIS Cite

Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar

Year 2019, Volume: 76 Issue: 4, 473 - 486, 01.12.2019

Abstract

Kanser hastalığının tedavisine etkin çözüm bulmak için uluslararası işbirlikli birçok araştırma yapılmaktadır ve bu devam eden çalışmalardan birçok umut veren sonuçlar elde edilmiştir. Kanser hastalığının tedavisine henüz etkin bir çözüm bulunamamıştır ancak araştırmacıların yeni yöntemler geliştirme çabası devam etmektedir ve elde edilen araştırma sonuçlarına ait bulguları içeren çalışmalar yayımlanmaya devam etmektedir. Bu kapsamda kanser hastalığının tedavisi üzerine odaklanan çalışmalarda, ileri teknolojilerin kullanımı sonrası elde edilen bulgular kişiselleştirilmiş, tıp alanında ve klinik uygulamalarda kullanılmaya başlanmıştır. Günümüzde genom dizilemeleri ile genoma dair bilgilerin elde edilmesini sağlayan yeni nesil dizileme teknolojileri, kanser araştırmalarında kullanılan en gelişmiş teknolojilerden biridir. Yeni nesil dizileme teknolojisi hem genleri inceler hem de bazı mutasyonların tespit edilmesini sağlar. Yeni nesil dizileme teknolojisi bilinmeyen dizi varyasyonlarının kısa zamanda ve daha kolaylıkla belirlenmesini sağlar, böylece klinisyenlerin kanser oluşumu, ilerleme ve metastaz mekanizmalarını daha iyi anlamalarını mümkün kılar. Bu derlemede tümör belirteci belirlenmesi, tedavi, hassas tıp, aşı ile tedavi, biyofarmasötikler, farmakogenomik, hedefe yönelik polifarmokoloji, toksigonostik ve farmakoepidemiyoloji gibi alanları da içeren farmasötik uygulamalarda, yeni nesil dizileme teknolojisinin kullanılabilirliği hakkında bilgi verilmeye çalışılmıştır

References

  • 1. Nawab DH. The Pharmaceutical Applications of Next Generation Sequencing in Oncology Drug Designing and Development. J Next Generat Seq Applic, 2015; 2:1.
  • 2. Servant N, Roméjon J, Gestraud P, La Rosa P, Lucotte G, et al. Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet, 2014; 5: 152.
  • 3. Weinberg RA. The Biology of Cancer. 2nd ed. New York: Garland Science, 2013.
  • 4. Neidle S. Cancer Drug Design and Discovery. 2nd ed. London: Elsevier Inc, 2013.
  • 5. Wu W, Choudhry H. Next Generation Sequencing in Cancer Research. 1nd ed. New York: Springer, 2013.
  • 6. Yamamoto T, Kanaya N, Somlo G, Chen S. Synergistic anti-cancer activity of CDK4/6 inhibitor palbociclib and dual mTOR kinase inhibitor MLN0128 in pRb-expressing ERnegative breast cancer. Breast Cancer Res Treat, 2019 Jan 3. doi: 10.1007/s10549-018-05104-9.
  • 7. Roshanravan N, Asgharian P, Dariushnejad H, MesriAlamdari N, Mansoori B, Mohammadi A, et al. Eryngium Billardieri Induces Apoptosis via Bax Gene Expression in Pancreatic Cancer Cells. Adv Pharm Bull, 2018 Nov; 8 (4): 667-674.
  • 8. Kilic N, Aras S, Cansaran-Duman D. Determination of Vulpinic Acid Effect on Apoptosis and mRNA Expression Levels in Breast Cancer Cell Lines. Anticancer Agents Med Chem, 2018 Sep 2. doi: 10.2174/1871520618666180903101803.
  • 9. Ezpeleta NR, Hackenberg M, Aransay AM. Bioinformatics for High Throughput Sequencing. 1 ed. New York: Springer, 2012.
  • 10. Tanman-Zıplar Ü, Duman DC, Türktaş M. Genomic and Transcriptomic Sequencing and Analysis Approaches. MBSJHS, 2018; 4(1): 34-42
  • 11. Ozretia L, Heukamp LC, Odenthal M, Buettner R. The role of molecular diagnostics in cancer diagnosis and treatment. Onkologie, 2012; 35 (1): 8-12.
  • 12. Guan YF, Li GR, Wang RJ, Yi YT, Yang L, et al. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer, 2012; 31: 463- 70.
  • 13. Cronin M, Ross JS. Comprehensive nextgeneration cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med, 2011; 5: 293-305.
  • 14. http://www.cancer.org/treatment/ understandingyourdiagnosis/ examsandtestdescriptions/tumormarkers/#.
  • 15. Gates RA, Regina MF. Oncology Nursing Secrets. 3rd ed. Elsevier Science, 2008.
  • 16. Wu JT. Circulating Tumor Markers of the New Millennium: Target Therapy, Early Detection, and Prognosis, Clinical chemistry. 1st ed. Washington: Amer Assn for Clinical Chemistry, 2002.
  • 17. Wu JT. Review of circulating tumor markers: from enzyme, carcinoembryonic protein to oncogene and suppressor gene. Ann Clin Lab Sci, 1999; 29: 106-111.
  • 18. Nishant T, Bindu HK, Kumar SD, Kumar AR. Pharmacogenomics-Personalized Treatment of Cancer, Diabetes and Cardiovascular Diseases. J Pharmacogenom Pharmacoproteomics, 2012; 3: 107.
  • 19. Lee A, Ezzeldin H, Fourie J, Diasio R. Dihydropyrimidine dehydrogenase deficiency: impact of pharmacogenetics on 5-fluorouracil therapy. Clin Adv Hematol Oncol, 2004; 2: 527- 32.
  • 20. Barbacid M. Ras genes. Annu Rev Biochem, 1987; 56: 779-827.
  • 21. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene, 1998; 17: 1395-1413.
  • 22. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, et al. Cancer genome landscapes. Science, 2013; 339: 1546-58.
  • 23. http://www.cancer.gov/cancertopics/ treatment/types/targeted-therapies/targetedtherapies-fact-sheet.
  • 24. Patel MN, Halling-Brown MD, Tym JE, Workman P, Al-Lazikani B. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov, 2013; 12: 35-50.
  • 25. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov, 2002; 1: 727-30.
  • 26. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov, 2006; 5: 993-96.
  • 27. McLeod HL. Cancer pharmacogenomics: early promise, but concerted effort needed. Science, 2013; 339: 1563-6.
  • 28. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, et al. Mir34: a new weapon against cancer? Mol Ther Nucleic Acids, 2014; 3: 194.
  • 29. Cohen V. Basic Concepts in Pharmacology: What You Need to Know for Each Drug Class, 4th ed. Ann Pharmacother, 2012.
  • 30. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med, 2011; 3: 111-121.
  • 31. Corless CL. Medicine. Personalized cancer diagnostics. Science, 2011; 334: 1217-1218.
  • 32. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 2012; 485: 502-6.
  • 33. Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol, 2013; 63: 920- 6.
  • 34. Woollard PM, Mehta NA, Vamathevan JJ, Van Horn S, Bonde BK, et al. The application of next-generation sequencing technologies to drug discovery and development. Drug Discov Today, 2011; 16: 512-9.
  • 35. Di Niro R, Sulic AM, Mignone F, D’Angelo S, Bordoni R, et al. Rapid interactome profiling by massive sequencing. Nucleic Acids Res, 2010; 38: 110.
  • 36. Simon Z, Peragovics A, Vigh-Smeller M, Csukly G, Tombor L, et al. Drug effect prediction by polypharmacology-based interaction profiling. J Chem Inf Model, 2012; 52: 134-45.
  • 37. Brianso F, Carrascosa MC, Oprea TI, Mestres J. Cross-pharmacology analysis of G proteincoupled receptors. Curr Top Med Chem, 2011; 11: 1956-63.
  • 38. Reddy AS, Zhang S. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol, 2013; 6: 41-7.
  • 39. Oprea TI, Mestres J. Drug repurposing: far beyond new targets for old drugs. AAPS J, 2012; 14: 759-63.
  • 40. Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, et al. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing. Mol Inform, 2011; 30: 100-111.
  • 41. Tang J, Aittokallio T. Network pharmacology strategies toward multitarget anticancer therapies: from computational models to experimental design principles. Curr Pharm Des, 2014; 20: 23-36.
  • 42. Church D, Kerr R, Domingo E, Rosmarin D, Palles C, et al. ‘Toxgnostics’: an unmet need in cancer medicine. Nat Rev Cancer, 2014; 14: 440-5
  • .43. Victoria JG, Wang C, Jones MS, Jaing C, McLoughlin K, et al. Viral nucleic acids in liveattenuated vaccines: detection of minority variants and an adventitious virus. J Virol, 2010; 84: 6033-60.
  • 44. Freedman AN, Sansbury LB, Figg WD, Potosky AL, Weiss Smith SR, et al. Cancer pharmacogenomics and pharmacoepidemiology: setting a research agenda to accelerate translation. J Natl Cancer Inst, 2010; 102: 1698-1705.
  • 45. Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One, 2008; 3: 3759.
  • 46. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011; 146: 904-917.
  • 47. Kaiser J. Epigenetic drugs take on cancer. Science, 2010; 330: 576-8.
  • 48. Dammacco F, Silvestris F. Chapter 1 - From the Double Helix to Oncogenomics and Precision Cancer Medicine: An Evolving Story. Oncogenomics, 2019; 3-16.
  • 49. Neesse A, C.A.B., Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? BMJ Journals, 2019; 68 (1): 159-171.
  • 50. Galanina N et al. Comprehensive Genomic Profiling Reveals Diverse but Actionable Molecular Portfolios across Hematologic Malignancies: Implications for Next Generation Clinical Trials. Cancers (Basel), 2018; 11(1).

Pharmaceutical Applications Based on Next Generation Sequencing Technology in Oncologic Drug Development

Year 2019, Volume: 76 Issue: 4, 473 - 486, 01.12.2019

Abstract

In order to find an effective solution to the treatment of cancer disease, many international collaborative researches have been carried out and many promising results have been obtained from these on going studies. An effective solution has not yet been found for cancer disease but studies on the development of new treatment methods and the findings of the research results continue to be published. In this context, in the studies focusing on the treatment of cancer, the findings obtained after the use of advanced technologies have been used in personalized medicine and clinical applications. Nowadays, next-generation sequencing technologies, which provide information on genomes with genome sequencing, are one of the most advanced technologies used in cancer research. Next-generation sequencing technology examines both genes and identifies some mutations. This technique enables the identification of unknown sequence variations in a short time and more easily, thus enabling clinicians to better understand the mechanisms of cancer. In this review, we aimed to provide information about the availability of next generation sequencing technology in pharmaceutical applications including areas such as tumor marker polifarmokoloji, toksigonostik ve farmakoepidemiyoloji gibi alanları da içeren farmasötik uygulamalarda, yeni nesil dizileme teknolojisinin kullanılabilirliği hakkında bilgi verilmeye çalışılmıştır

References

  • 1. Nawab DH. The Pharmaceutical Applications of Next Generation Sequencing in Oncology Drug Designing and Development. J Next Generat Seq Applic, 2015; 2:1.
  • 2. Servant N, Roméjon J, Gestraud P, La Rosa P, Lucotte G, et al. Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet, 2014; 5: 152.
  • 3. Weinberg RA. The Biology of Cancer. 2nd ed. New York: Garland Science, 2013.
  • 4. Neidle S. Cancer Drug Design and Discovery. 2nd ed. London: Elsevier Inc, 2013.
  • 5. Wu W, Choudhry H. Next Generation Sequencing in Cancer Research. 1nd ed. New York: Springer, 2013.
  • 6. Yamamoto T, Kanaya N, Somlo G, Chen S. Synergistic anti-cancer activity of CDK4/6 inhibitor palbociclib and dual mTOR kinase inhibitor MLN0128 in pRb-expressing ERnegative breast cancer. Breast Cancer Res Treat, 2019 Jan 3. doi: 10.1007/s10549-018-05104-9.
  • 7. Roshanravan N, Asgharian P, Dariushnejad H, MesriAlamdari N, Mansoori B, Mohammadi A, et al. Eryngium Billardieri Induces Apoptosis via Bax Gene Expression in Pancreatic Cancer Cells. Adv Pharm Bull, 2018 Nov; 8 (4): 667-674.
  • 8. Kilic N, Aras S, Cansaran-Duman D. Determination of Vulpinic Acid Effect on Apoptosis and mRNA Expression Levels in Breast Cancer Cell Lines. Anticancer Agents Med Chem, 2018 Sep 2. doi: 10.2174/1871520618666180903101803.
  • 9. Ezpeleta NR, Hackenberg M, Aransay AM. Bioinformatics for High Throughput Sequencing. 1 ed. New York: Springer, 2012.
  • 10. Tanman-Zıplar Ü, Duman DC, Türktaş M. Genomic and Transcriptomic Sequencing and Analysis Approaches. MBSJHS, 2018; 4(1): 34-42
  • 11. Ozretia L, Heukamp LC, Odenthal M, Buettner R. The role of molecular diagnostics in cancer diagnosis and treatment. Onkologie, 2012; 35 (1): 8-12.
  • 12. Guan YF, Li GR, Wang RJ, Yi YT, Yang L, et al. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer, 2012; 31: 463- 70.
  • 13. Cronin M, Ross JS. Comprehensive nextgeneration cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med, 2011; 5: 293-305.
  • 14. http://www.cancer.org/treatment/ understandingyourdiagnosis/ examsandtestdescriptions/tumormarkers/#.
  • 15. Gates RA, Regina MF. Oncology Nursing Secrets. 3rd ed. Elsevier Science, 2008.
  • 16. Wu JT. Circulating Tumor Markers of the New Millennium: Target Therapy, Early Detection, and Prognosis, Clinical chemistry. 1st ed. Washington: Amer Assn for Clinical Chemistry, 2002.
  • 17. Wu JT. Review of circulating tumor markers: from enzyme, carcinoembryonic protein to oncogene and suppressor gene. Ann Clin Lab Sci, 1999; 29: 106-111.
  • 18. Nishant T, Bindu HK, Kumar SD, Kumar AR. Pharmacogenomics-Personalized Treatment of Cancer, Diabetes and Cardiovascular Diseases. J Pharmacogenom Pharmacoproteomics, 2012; 3: 107.
  • 19. Lee A, Ezzeldin H, Fourie J, Diasio R. Dihydropyrimidine dehydrogenase deficiency: impact of pharmacogenetics on 5-fluorouracil therapy. Clin Adv Hematol Oncol, 2004; 2: 527- 32.
  • 20. Barbacid M. Ras genes. Annu Rev Biochem, 1987; 56: 779-827.
  • 21. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene, 1998; 17: 1395-1413.
  • 22. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, et al. Cancer genome landscapes. Science, 2013; 339: 1546-58.
  • 23. http://www.cancer.gov/cancertopics/ treatment/types/targeted-therapies/targetedtherapies-fact-sheet.
  • 24. Patel MN, Halling-Brown MD, Tym JE, Workman P, Al-Lazikani B. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov, 2013; 12: 35-50.
  • 25. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov, 2002; 1: 727-30.
  • 26. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov, 2006; 5: 993-96.
  • 27. McLeod HL. Cancer pharmacogenomics: early promise, but concerted effort needed. Science, 2013; 339: 1563-6.
  • 28. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, et al. Mir34: a new weapon against cancer? Mol Ther Nucleic Acids, 2014; 3: 194.
  • 29. Cohen V. Basic Concepts in Pharmacology: What You Need to Know for Each Drug Class, 4th ed. Ann Pharmacother, 2012.
  • 30. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med, 2011; 3: 111-121.
  • 31. Corless CL. Medicine. Personalized cancer diagnostics. Science, 2011; 334: 1217-1218.
  • 32. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 2012; 485: 502-6.
  • 33. Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol, 2013; 63: 920- 6.
  • 34. Woollard PM, Mehta NA, Vamathevan JJ, Van Horn S, Bonde BK, et al. The application of next-generation sequencing technologies to drug discovery and development. Drug Discov Today, 2011; 16: 512-9.
  • 35. Di Niro R, Sulic AM, Mignone F, D’Angelo S, Bordoni R, et al. Rapid interactome profiling by massive sequencing. Nucleic Acids Res, 2010; 38: 110.
  • 36. Simon Z, Peragovics A, Vigh-Smeller M, Csukly G, Tombor L, et al. Drug effect prediction by polypharmacology-based interaction profiling. J Chem Inf Model, 2012; 52: 134-45.
  • 37. Brianso F, Carrascosa MC, Oprea TI, Mestres J. Cross-pharmacology analysis of G proteincoupled receptors. Curr Top Med Chem, 2011; 11: 1956-63.
  • 38. Reddy AS, Zhang S. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol, 2013; 6: 41-7.
  • 39. Oprea TI, Mestres J. Drug repurposing: far beyond new targets for old drugs. AAPS J, 2012; 14: 759-63.
  • 40. Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, et al. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing. Mol Inform, 2011; 30: 100-111.
  • 41. Tang J, Aittokallio T. Network pharmacology strategies toward multitarget anticancer therapies: from computational models to experimental design principles. Curr Pharm Des, 2014; 20: 23-36.
  • 42. Church D, Kerr R, Domingo E, Rosmarin D, Palles C, et al. ‘Toxgnostics’: an unmet need in cancer medicine. Nat Rev Cancer, 2014; 14: 440-5
  • .43. Victoria JG, Wang C, Jones MS, Jaing C, McLoughlin K, et al. Viral nucleic acids in liveattenuated vaccines: detection of minority variants and an adventitious virus. J Virol, 2010; 84: 6033-60.
  • 44. Freedman AN, Sansbury LB, Figg WD, Potosky AL, Weiss Smith SR, et al. Cancer pharmacogenomics and pharmacoepidemiology: setting a research agenda to accelerate translation. J Natl Cancer Inst, 2010; 102: 1698-1705.
  • 45. Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One, 2008; 3: 3759.
  • 46. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011; 146: 904-917.
  • 47. Kaiser J. Epigenetic drugs take on cancer. Science, 2010; 330: 576-8.
  • 48. Dammacco F, Silvestris F. Chapter 1 - From the Double Helix to Oncogenomics and Precision Cancer Medicine: An Evolving Story. Oncogenomics, 2019; 3-16.
  • 49. Neesse A, C.A.B., Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? BMJ Journals, 2019; 68 (1): 159-171.
  • 50. Galanina N et al. Comprehensive Genomic Profiling Reveals Diverse but Actionable Molecular Portfolios across Hematologic Malignancies: Implications for Next Generation Clinical Trials. Cancers (Basel), 2018; 11(1).
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Sevcan Yangın This is me

Ümmügülsüm Tanman Zıplar This is me

Demet Cansaran-duman This is me

Publication Date December 1, 2019
Published in Issue Year 2019 Volume: 76 Issue: 4

Cite

APA Yangın, S., Zıplar, Ü. T., & Cansaran-duman, D. (2019). Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 76(4), 473-486.
AMA Yangın S, Zıplar ÜT, Cansaran-duman D. Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar. Turk Hij Den Biyol Derg. December 2019;76(4):473-486.
Chicago Yangın, Sevcan, Ümmügülsüm Tanman Zıplar, and Demet Cansaran-duman. “Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 76, no. 4 (December 2019): 473-86.
EndNote Yangın S, Zıplar ÜT, Cansaran-duman D (December 1, 2019) Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar. Türk Hijyen ve Deneysel Biyoloji Dergisi 76 4 473–486.
IEEE S. Yangın, Ü. T. Zıplar, and D. Cansaran-duman, “Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar”, Turk Hij Den Biyol Derg, vol. 76, no. 4, pp. 473–486, 2019.
ISNAD Yangın, Sevcan et al. “Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar”. Türk Hijyen ve Deneysel Biyoloji Dergisi 76/4 (December 2019), 473-486.
JAMA Yangın S, Zıplar ÜT, Cansaran-duman D. Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar. Turk Hij Den Biyol Derg. 2019;76:473–486.
MLA Yangın, Sevcan et al. “Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, vol. 76, no. 4, 2019, pp. 473-86.
Vancouver Yangın S, Zıplar ÜT, Cansaran-duman D. Onkolojik İlaç Geliştirilmesinde Yeni Nesil Dizileme Teknolojisine Dayalı Farmasötik Uygulamalar. Turk Hij Den Biyol Derg. 2019;76(4):473-86.