BibTex RIS Cite

Lipopolisakkarit’in neden olduğu bağırsak toksisitesine karşı biyosentetik gümüş nanopartiküllerin etkisi

Year 2020, Volume: 77 Issue: 3, 333 - 342, 01.09.2020

Abstract

Amaç: Nanopartiküller, sahip oldukları üstün fiziksel özellikleri nedeniyle biyoteknoloji, farmakoloji, tıp, sensörler, bilişim ve iletişim, elektronik, savunma, tekstil, makine ve inşaat sanayileri de dahil olmak üzere bir çok alanlarda kullanılmaya başlanmıştır. Biyolojik sentez yöntemleri toksik kimyasallar kullanılmadığından dolayı farmasötik ve diğer biyomedikal uygulamalar için çevre dostu özellikleri nedeniyle son yıllarda yaygın olarak kullanılmaktadır. Mikroorganizmalar ve bitki ekstraktları ile nanopartiküllerin biyolojik sentezi ile ilgili çalışmalar günümüzde hızla artmıştır. Bitki orijinli polifenolik bileşikler son zamanlarda çalışmalarda yoğun şekilde kullanılmaktadır. Bu çalışmada lipopolisakkarit LPS ile oluşturulan bağırsak hasarı ve apoptozis üzerine üzüm çekirdeği ekstresi ile hazırlanan biyosentetik gümüş nanopartiküllerin etkisinin araştırılması amaçlandı. Yöntem: Çalışmada 80 adet Wistar albino türü yetişkin erkek sıçanlar; kontrol grubu, LPS uygulama grubu, üzüm çekirdeği ekstresi grubu, gümüş nanopartikül AgNP grubu, Ag iyonu grubu ve LPS+ Ag iyonu grubu, LPS+ AgNP grubu, LPS+ üzüm çekirdeği özütü grupları olmak üzere rastgele sekiz eşit gruba ayrıldı. Hayvanlardan alınan bağırsak dokularında histopatolojik değerlendirme ve TUNEL yöntemi ile apoptotik hücre sayıları değerlendirildi. Bulgular: Çalışmanın sonucunda LPS uygulamasının bağırsaklarda nekrotik villuslarda lümene dökülme, villuslarda dejeneratif değişiklikler ve kanamaya neden olduğu, Ag iyonu, üzüm çekirdeği özütü ve AgNP’lerin LPS ile birlikte uygulanması ile bu değişikliklerin hafiflediği görülmüştür. Ayrıca LPS apoptotik hücre sayısını da diğer gruplara göre anlamlı derecede artırmış ve Ag iyonu, üzüm çekirdeği ekstresi ve AgNP’lerin LPS ile birlikte uygulanması ise apoptotik hücre sayısı üzerine istatistiksel olarak olumlu etki göstermiştir. Sonuç: Sonuç olarak biyosentetik AgNP’lerin LPS’nin neden olduğu toksisiteyi azaltacak potansiyele sahip olduğunu söyleyebiliriz. Bu çalışma bundan sonraki çalışmalara ışık tutacak niteliktedir.

References

  • 1. Sahoo D, Dill DL, Tibshirani R, Plevritis SK. Extracting binary signals from microarray timecourse data. Nucleic Acids Res. 2007;35(11):3705- 12.DOI: 10.1093/nar/gkm284.
  • 2. Hanks NA, Caruso JA, Zhang P. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J Environ Manage. 2015;164:41-5.DOI: 10.1016/j. jenvman.2015.08.026.
  • 3. Stone RC, Fellows BD, Qi B, Trebatoski D, Jenkins B, Raval Y, et al. Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms. J Colloid Interface Sci. 2015;459:175-82. DOI: 10.1016/j.jcis.2015.08.012.
  • 4. Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;57:434-51. DOI: 10.1016/j.msec.2015.07.050.
  • 5. Asztemborska M, Steborowski R, Kowalska J, Bystrzejewska-Piotrowska G. Accumulation of Platinum Nanoparticles by Sinapis alba and Lepidium sativum Plants. Water Air Soil Pollut. 2015;226(4):126-.DOI: 10.1007/s11270-015- 2381-y.
  • 6. Haverkamp RG, Marshall AT, van Agterveld D. Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo. Journal of Nanoparticle Research. 2007;9(4):697-700.
  • 7. Li H, Qiao Y, Li J, Fang H, Fan D, Wang W. A sensitive and label-free photo electrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosensors and Bioelectronics. 2016; (77): 378-84. DOI: 10.1016/j. bios.2015.09.066.
  • 8. Yamada K, Choi W, Lee I, Cho B-K, Jun S. Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor. Biosensors and Bioelectronics. 2016;77:137-43.
  • 9. Yu Y, Guo M, Yuan M, Liu W, Hu J. Nickel nanoparticle-modified electrode for ultrasensitive electrochemical detection of insulin. Biosensors and Bioelectronics. 2016;77:215-9.DOI: 10.1016/j.bios.2015.09.036.
  • 10. Göbel G, Lange R, Hollidt J-M, Lisdat F. Development of a fast and simple test system for the semiquantitative protein detection in cerebrospinal liquids based on gold nanoparticles. Talanta. 2016;146:49-54.
  • 11. Schwaminger SP, García PF, Merck GK, Bodensteiner FA, Heissler S, Günther S, et al. Nature of Interactions of Amino Acids with Bare Magnetite Nanoparticles. The Journal of Physical Chemistry C. 2015;119(40):23032-41.
  • 12. Zhu K, Wu M, Lai H, Guo C, Li J, Wang Y, et al. Nanoparticle-enhanced generation of genetransfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials. 2016;74:188-99.doi: 10.1016/j.biomaterials.2015.10.010.
  • 13. Ahmed S, Ahmad M,Swami BL, Ikram S,Are view on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications:agreen expertise,J.Adv.Res. 2016(7) 17–28.
  • 14. Yu DG, Formation of colloidal silver nanoparticles stabilized by Na+–poly(-glutamic acid)–silver nitrate complex via chemical reduction process, J. Colloids Surf. B 2007;(59): 171–8.
  • 15. Mallick K, Witcombb MJ, Scurrella MS, Selfassembly of silver nanoparticlesin a polymer solvent: formation of a nanochain through nanoscale soldering,Mater. Chem. Phys. 2005;(90):221–4.
  • 16. Smetana AB, Klabunde KJ, Sorensea CM, Synthesis of spherical silvernanoparticles by digestive ripening, stabilization with various agents, and their3-D and 2-D superlattice formation, J. Colloid Interface Sci. 2005;(284):521–6.
  • 17. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R, Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles, Small 2005;(1):517–520.
  • 18. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA, Rapid syn-thesis of silver nanoparticles using culture supernatants of Enterobacteria: anovel biological approach, Process Biochem. 2007:(42);919–23.
  • 19. Rodriguez-Perez C, Garcia-Villanova B, Guerra-Hernandez E, Verardo V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients. 2019;11(10).doi: 10.3390/nu11102435.
  • 20. Fısgın NT. Sepsis. OMÜ Tıp Dergisi. 2004;21(2):100- 9.
  • 21. Doğanyiğit, Z., Öztürk Küp, F., Kaymak, E., Okan, A., Koçak, B., Akin, AT. , Gümüş Nanopartiküllerinin ve Üzüm Çekirdeği Ekstraktının Endotoksik Kalp Dokusundaki Histolojik Değişikliklere ve TNF-ɑ ve BNP Ekspresyonuna Etkisi. Bozok Tıp Dergisi , 2019; (9):87-96.
  • 22. Doganyigit Z, Kup FO, Silici S, Deniz K, Yakan B, Atayoglu T. Protective effects of propolis on female rats’ histopathological,biochemical and genotoxic changes during LPS induced endotoxemia. Phytomedicine. 2013;20(7):632-9. doi: 10.1016/j. phymed.2013.01.010.
  • 23. Ragab GMA, El-Denshary ES, Hassan AM, AbdelAzeim SH, Hassan NS, Mannaa FA, et al. Grape (Vitis vinifera) seed extract inhibits the cytotoxicity and oxidativestress in liver of rats treated with carbon tetrachloride. Global J Pharmacol. 2013;7(3):258- 69.
  • 24. Atasever A, Yaman D. The effects of grape seed and colchicine on carbon tetrachloride induced hepatic damage in rats. Exp Toxicol Pathol. 2014;66(8):361-5. doi: 10.1016/j. etp.2014.04.008.
  • 25. Gharpure S, Akash A, Ankamwar B. A Review on Antimicrobial Properties of Metal Nanoparticles. J Nanosci Nanotechnol. 2020;20(6):3303-39.
  • 26. Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302(2):71-83.doi: 10.1007/ s00403-009-1001-3.
  • 27. Yadav M, Jain S, Bhardwaj A, Nagpal R, Puniya M, Tomar R, et al. Biological and medicinal properties of grapes and their bioactive constituents: an update. J Med Food. 2009;12(3):473-84. doi: 10.1089/jmf.2008.0096.
  • 28. Hu Y, Wei M, Niu Q, Ma R, Li Y, Wang X, et al. Grape seed proanthocyanidin extract alleviates arsenicinduced lung damage through NF-kappaB signaling. Exp Biol Med (Maywood). 2019;244(3):213-26. https://doi.org/10.1177/1535370219829881.
  • 29. Arafat EA, Shabaan DA. The possible neuroprotective role of grape seed extract on the histopathological changes of the cerebellar cortex of rats prenatally exposed to Valproic Acid: animal model of autism. Acta Histochem. 2019;121(7):841- 51.doi: 10.1016/j.acthis.2019.08.002.
  • 30. Wang C, Li J, Song GL, Niu Q, Xu SZ, Feng GL, et al. Grape Seed Procyanidin Extract Reduces Arsenic-Induced Renal Inflammatory Injury in Male Mice. Biomed Environ Sci. 2017;30(7):535-9.doi: 10.3967/bes2017.071.
  • 31. Pallares V, Fernandez-Iglesias A, Cedo L, CastellAuvi A, Pinent M, Ardevol A, et al. Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats. Free Radic Biol Med. 2013;60:107-14.doi: 10.1016/j. freeradbiomed.2013.02.007.
  • 32. Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, et al. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology. 2014;8 Suppl 1:36-45.doi: 10.3109/17435390.2013.855827.
  • 33. Sarhan OM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine. 2014;9:1505-17.doi: 10.2147/ IJN.S56729. eCollection 2014.
  • 34. Vrcek IV, Zuntar I, Petlevski R, Pavicic I, Dutour Sikiric M, Curlin M, et al. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells. Environ Toxicol. 2016;31(6):679-92.doi: 10.1002/tox.22081.
  • 35. Elle Ebabe R, Gaillet S, Vide J, Romain C, Lauret C, Rugani N, et al. Dietary exposure to silver nanoparticles in Sprague-Dawley rats: effects on oxidative stress and inflammation. Food Chem Toxicol. 2013;60:297-301.doi: 10.1016/j. fct.2013.07.071.
  • 36. Ahamed M, Alsalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23-24):1841-8. doi: 10.1016/j.cca.2010.08.016.
  • 37. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;109 Suppl 4(Suppl 4):547-51.DOI: 10.1289/ehp.01109s4547.
  • 38. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009;9(8):4924-32.DOI: 10.1166/jnn.2009.1269.
  • 39. Adeyemi OS, Faniyan TO. Antioxidant status of rats administered silver nanoparticles orally. Journal of Taibah University Medical Sciences. 2014;9(3):182-6.doi: 10.3892/etm.2019.8108.
  • 40. Klein S, Dell’Arciprete ML, Wegmann M, Distel LV, Neuhuber W, Gonzalez MC, et al. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem Biophys Res Commun. 2013;434(2):217-22. doi: 10.1016/j. bbrc.2013.03.042.
  • 41. Zong X, Cao X, Wang H, Zhao J, Lu Z, Wang F, et al. Porcine lactoferrin-derived peptide LFP-20 modulates immune homoeostasis to defend lipopolysaccharide-triggered intestinal inflammation in mice. Br J Nutr. 2019;121(11):1255- 63.doi: 10.1017/S0007114519000485.
  • 42. Zhou Y, Yuan HR, Cui L, Ansari AR, Xiao K, Luo Y, et al. Effects of visfatin on the apoptosis of intestinal mucosal cells in immunological stressed rats. Acta Histochem. 2017;119(1):26-31.doi: 10.1016/j. acthis.2016.11.002.

The effect of biosynthetic silver nanoparticles against intestinal toxicity caused by lipopolysaccharide

Year 2020, Volume: 77 Issue: 3, 333 - 342, 01.09.2020

Abstract

Objective: Nanoparticles have been used in many fields including biotechnology, pharmacology, medicine, sensors, informatics and communications, electronics, defense, textile, machinery and construction industries due to their superior physical properties. Biological synthesis methods have been widely used in recent years due to their environmentally friendly properties for pharmaceutical and other biomedical applications since toxic chemicals are not used. Studies on the biological synthesis of microorganisms and plant extracts and nanoparticles have increased rapidly today. Plant origin polyphenolic compounds have been used extensively in recent studies. In this study, it was aimed to investigate the effect of biosynthetic silver nanoparticles prepared with grape seed extract on intestinal damage and apoptosis caused by lipopolysaccharide LPS . Methods: In the study, 80 rats of Wistar albino were male rats; control group, LPS group, grape seed extract group, silver nanoparticle AgNP group, Ag ion group and LPS + Ag ion group, LPS + AgNP group, LPS + grape seed extract groups were randomly divided into eight groups. Apoptotic cell counts were evaluated by histopathological evaluation and TUNEL method in intestinal tissues from animals. Results: As a result of the study, it has been observed that LPS application causes lumen pouring in necrotic villi in the intestines, degenerative changes and bleeding in villi, and these changes are alleviated with the application of Ag ion, grape seed extract and AgNPs together with LPS. In addition, LPS significantly increased the number of apoptotic cells compared to other groups, and the application of Ag ions, grape seed extract and AgNPs together with LPS showed a statistically positive effect. Conclusion: As a result, It can be said that biosynthetic AgNPs have the potential to reduce the toxicity caused by LPS. This study will shed light on future studies.

References

  • 1. Sahoo D, Dill DL, Tibshirani R, Plevritis SK. Extracting binary signals from microarray timecourse data. Nucleic Acids Res. 2007;35(11):3705- 12.DOI: 10.1093/nar/gkm284.
  • 2. Hanks NA, Caruso JA, Zhang P. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J Environ Manage. 2015;164:41-5.DOI: 10.1016/j. jenvman.2015.08.026.
  • 3. Stone RC, Fellows BD, Qi B, Trebatoski D, Jenkins B, Raval Y, et al. Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms. J Colloid Interface Sci. 2015;459:175-82. DOI: 10.1016/j.jcis.2015.08.012.
  • 4. Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;57:434-51. DOI: 10.1016/j.msec.2015.07.050.
  • 5. Asztemborska M, Steborowski R, Kowalska J, Bystrzejewska-Piotrowska G. Accumulation of Platinum Nanoparticles by Sinapis alba and Lepidium sativum Plants. Water Air Soil Pollut. 2015;226(4):126-.DOI: 10.1007/s11270-015- 2381-y.
  • 6. Haverkamp RG, Marshall AT, van Agterveld D. Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo. Journal of Nanoparticle Research. 2007;9(4):697-700.
  • 7. Li H, Qiao Y, Li J, Fang H, Fan D, Wang W. A sensitive and label-free photo electrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosensors and Bioelectronics. 2016; (77): 378-84. DOI: 10.1016/j. bios.2015.09.066.
  • 8. Yamada K, Choi W, Lee I, Cho B-K, Jun S. Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor. Biosensors and Bioelectronics. 2016;77:137-43.
  • 9. Yu Y, Guo M, Yuan M, Liu W, Hu J. Nickel nanoparticle-modified electrode for ultrasensitive electrochemical detection of insulin. Biosensors and Bioelectronics. 2016;77:215-9.DOI: 10.1016/j.bios.2015.09.036.
  • 10. Göbel G, Lange R, Hollidt J-M, Lisdat F. Development of a fast and simple test system for the semiquantitative protein detection in cerebrospinal liquids based on gold nanoparticles. Talanta. 2016;146:49-54.
  • 11. Schwaminger SP, García PF, Merck GK, Bodensteiner FA, Heissler S, Günther S, et al. Nature of Interactions of Amino Acids with Bare Magnetite Nanoparticles. The Journal of Physical Chemistry C. 2015;119(40):23032-41.
  • 12. Zhu K, Wu M, Lai H, Guo C, Li J, Wang Y, et al. Nanoparticle-enhanced generation of genetransfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials. 2016;74:188-99.doi: 10.1016/j.biomaterials.2015.10.010.
  • 13. Ahmed S, Ahmad M,Swami BL, Ikram S,Are view on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications:agreen expertise,J.Adv.Res. 2016(7) 17–28.
  • 14. Yu DG, Formation of colloidal silver nanoparticles stabilized by Na+–poly(-glutamic acid)–silver nitrate complex via chemical reduction process, J. Colloids Surf. B 2007;(59): 171–8.
  • 15. Mallick K, Witcombb MJ, Scurrella MS, Selfassembly of silver nanoparticlesin a polymer solvent: formation of a nanochain through nanoscale soldering,Mater. Chem. Phys. 2005;(90):221–4.
  • 16. Smetana AB, Klabunde KJ, Sorensea CM, Synthesis of spherical silvernanoparticles by digestive ripening, stabilization with various agents, and their3-D and 2-D superlattice formation, J. Colloid Interface Sci. 2005;(284):521–6.
  • 17. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R, Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles, Small 2005;(1):517–520.
  • 18. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA, Rapid syn-thesis of silver nanoparticles using culture supernatants of Enterobacteria: anovel biological approach, Process Biochem. 2007:(42);919–23.
  • 19. Rodriguez-Perez C, Garcia-Villanova B, Guerra-Hernandez E, Verardo V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients. 2019;11(10).doi: 10.3390/nu11102435.
  • 20. Fısgın NT. Sepsis. OMÜ Tıp Dergisi. 2004;21(2):100- 9.
  • 21. Doğanyiğit, Z., Öztürk Küp, F., Kaymak, E., Okan, A., Koçak, B., Akin, AT. , Gümüş Nanopartiküllerinin ve Üzüm Çekirdeği Ekstraktının Endotoksik Kalp Dokusundaki Histolojik Değişikliklere ve TNF-ɑ ve BNP Ekspresyonuna Etkisi. Bozok Tıp Dergisi , 2019; (9):87-96.
  • 22. Doganyigit Z, Kup FO, Silici S, Deniz K, Yakan B, Atayoglu T. Protective effects of propolis on female rats’ histopathological,biochemical and genotoxic changes during LPS induced endotoxemia. Phytomedicine. 2013;20(7):632-9. doi: 10.1016/j. phymed.2013.01.010.
  • 23. Ragab GMA, El-Denshary ES, Hassan AM, AbdelAzeim SH, Hassan NS, Mannaa FA, et al. Grape (Vitis vinifera) seed extract inhibits the cytotoxicity and oxidativestress in liver of rats treated with carbon tetrachloride. Global J Pharmacol. 2013;7(3):258- 69.
  • 24. Atasever A, Yaman D. The effects of grape seed and colchicine on carbon tetrachloride induced hepatic damage in rats. Exp Toxicol Pathol. 2014;66(8):361-5. doi: 10.1016/j. etp.2014.04.008.
  • 25. Gharpure S, Akash A, Ankamwar B. A Review on Antimicrobial Properties of Metal Nanoparticles. J Nanosci Nanotechnol. 2020;20(6):3303-39.
  • 26. Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302(2):71-83.doi: 10.1007/ s00403-009-1001-3.
  • 27. Yadav M, Jain S, Bhardwaj A, Nagpal R, Puniya M, Tomar R, et al. Biological and medicinal properties of grapes and their bioactive constituents: an update. J Med Food. 2009;12(3):473-84. doi: 10.1089/jmf.2008.0096.
  • 28. Hu Y, Wei M, Niu Q, Ma R, Li Y, Wang X, et al. Grape seed proanthocyanidin extract alleviates arsenicinduced lung damage through NF-kappaB signaling. Exp Biol Med (Maywood). 2019;244(3):213-26. https://doi.org/10.1177/1535370219829881.
  • 29. Arafat EA, Shabaan DA. The possible neuroprotective role of grape seed extract on the histopathological changes of the cerebellar cortex of rats prenatally exposed to Valproic Acid: animal model of autism. Acta Histochem. 2019;121(7):841- 51.doi: 10.1016/j.acthis.2019.08.002.
  • 30. Wang C, Li J, Song GL, Niu Q, Xu SZ, Feng GL, et al. Grape Seed Procyanidin Extract Reduces Arsenic-Induced Renal Inflammatory Injury in Male Mice. Biomed Environ Sci. 2017;30(7):535-9.doi: 10.3967/bes2017.071.
  • 31. Pallares V, Fernandez-Iglesias A, Cedo L, CastellAuvi A, Pinent M, Ardevol A, et al. Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats. Free Radic Biol Med. 2013;60:107-14.doi: 10.1016/j. freeradbiomed.2013.02.007.
  • 32. Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, et al. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology. 2014;8 Suppl 1:36-45.doi: 10.3109/17435390.2013.855827.
  • 33. Sarhan OM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine. 2014;9:1505-17.doi: 10.2147/ IJN.S56729. eCollection 2014.
  • 34. Vrcek IV, Zuntar I, Petlevski R, Pavicic I, Dutour Sikiric M, Curlin M, et al. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells. Environ Toxicol. 2016;31(6):679-92.doi: 10.1002/tox.22081.
  • 35. Elle Ebabe R, Gaillet S, Vide J, Romain C, Lauret C, Rugani N, et al. Dietary exposure to silver nanoparticles in Sprague-Dawley rats: effects on oxidative stress and inflammation. Food Chem Toxicol. 2013;60:297-301.doi: 10.1016/j. fct.2013.07.071.
  • 36. Ahamed M, Alsalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23-24):1841-8. doi: 10.1016/j.cca.2010.08.016.
  • 37. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;109 Suppl 4(Suppl 4):547-51.DOI: 10.1289/ehp.01109s4547.
  • 38. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009;9(8):4924-32.DOI: 10.1166/jnn.2009.1269.
  • 39. Adeyemi OS, Faniyan TO. Antioxidant status of rats administered silver nanoparticles orally. Journal of Taibah University Medical Sciences. 2014;9(3):182-6.doi: 10.3892/etm.2019.8108.
  • 40. Klein S, Dell’Arciprete ML, Wegmann M, Distel LV, Neuhuber W, Gonzalez MC, et al. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem Biophys Res Commun. 2013;434(2):217-22. doi: 10.1016/j. bbrc.2013.03.042.
  • 41. Zong X, Cao X, Wang H, Zhao J, Lu Z, Wang F, et al. Porcine lactoferrin-derived peptide LFP-20 modulates immune homoeostasis to defend lipopolysaccharide-triggered intestinal inflammation in mice. Br J Nutr. 2019;121(11):1255- 63.doi: 10.1017/S0007114519000485.
  • 42. Zhou Y, Yuan HR, Cui L, Ansari AR, Xiao K, Luo Y, et al. Effects of visfatin on the apoptosis of intestinal mucosal cells in immunological stressed rats. Acta Histochem. 2017;119(1):26-31.doi: 10.1016/j. acthis.2016.11.002.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Fatma Öztürk Küp This is me

Burçin Koçak This is me

Ali Tuğrul Akın This is me

İsrafil Doğanyiğit This is me

Aslı Okan This is me

Emin Kaymak This is me

Züleyha Doğanyiğit This is me

Publication Date September 1, 2020
Published in Issue Year 2020 Volume: 77 Issue: 3

Cite

APA Öztürk Küp, F., Koçak, B., Akın, A. T., Doğanyiğit, İ., et al. (2020). Lipopolisakkarit’in neden olduğu bağırsak toksisitesine karşı biyosentetik gümüş nanopartiküllerin etkisi. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 77(3), 333-342.
AMA Öztürk Küp F, Koçak B, Akın AT, Doğanyiğit İ, Okan A, Kaymak E, Doğanyiğit Z. Lipopolisakkarit’in neden olduğu bağırsak toksisitesine karşı biyosentetik gümüş nanopartiküllerin etkisi. Turk Hij Den Biyol Derg. September 2020;77(3):333-342.
Chicago Öztürk Küp, Fatma, Burçin Koçak, Ali Tuğrul Akın, İsrafil Doğanyiğit, Aslı Okan, Emin Kaymak, and Züleyha Doğanyiğit. “Lipopolisakkarit’in Neden olduğu bağırsak Toksisitesine karşı Biyosentetik gümüş nanopartiküllerin Etkisi”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 77, no. 3 (September 2020): 333-42.
EndNote Öztürk Küp F, Koçak B, Akın AT, Doğanyiğit İ, Okan A, Kaymak E, Doğanyiğit Z (September 1, 2020) Lipopolisakkarit’in neden olduğu bağırsak toksisitesine karşı biyosentetik gümüş nanopartiküllerin etkisi. Türk Hijyen ve Deneysel Biyoloji Dergisi 77 3 333–342.
IEEE F. Öztürk Küp, B. Koçak, A. T. Akın, İ. Doğanyiğit, A. Okan, E. Kaymak, and Z. Doğanyiğit, “Lipopolisakkarit’in neden olduğu bağırsak toksisitesine karşı biyosentetik gümüş nanopartiküllerin etkisi”, Turk Hij Den Biyol Derg, vol. 77, no. 3, pp. 333–342, 2020.
ISNAD Öztürk Küp, Fatma et al. “Lipopolisakkarit’in Neden olduğu bağırsak Toksisitesine karşı Biyosentetik gümüş nanopartiküllerin Etkisi”. Türk Hijyen ve Deneysel Biyoloji Dergisi 77/3 (September 2020), 333-342.
JAMA Öztürk Küp F, Koçak B, Akın AT, Doğanyiğit İ, Okan A, Kaymak E, Doğanyiğit Z. Lipopolisakkarit’in neden olduğu bağırsak toksisitesine karşı biyosentetik gümüş nanopartiküllerin etkisi. Turk Hij Den Biyol Derg. 2020;77:333–342.
MLA Öztürk Küp, Fatma et al. “Lipopolisakkarit’in Neden olduğu bağırsak Toksisitesine karşı Biyosentetik gümüş nanopartiküllerin Etkisi”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, vol. 77, no. 3, 2020, pp. 333-42.
Vancouver Öztürk Küp F, Koçak B, Akın AT, Doğanyiğit İ, Okan A, Kaymak E, Doğanyiğit Z. Lipopolisakkarit’in neden olduğu bağırsak toksisitesine karşı biyosentetik gümüş nanopartiküllerin etkisi. Turk Hij Den Biyol Derg. 2020;77(3):333-42.