Research Article
BibTex RIS Cite

Year 2023, Volume: 9 Issue: 1, 127 - 137, 31.01.2023
https://doi.org/10.18186/thermal.1243491
https://izlik.org/JA93HP38BH

Abstract

CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room

Year 2023, Volume: 9 Issue: 1, 127 - 137, 31.01.2023
https://doi.org/10.18186/thermal.1243491
https://izlik.org/JA93HP38BH

Abstract

The virus diffusion in a ventilated room with the droplets produced by coughing and breathing are presented by the Lagrangian model. When the human body is located in the middle of the room with two locations of AC, in front of and behind the human body, three angles of Air Conditioning (AC) gate are applied 0°, 30°, and 60° to show droplet particle diffusion in the room in these cases. Three types of coughing velocity profiles were selected, real human coughing, sinusoidal cough, and cough jet with one velocity profile of breathing as a step function to cover the inhaling and exhaling cycle. The simulation results show that the uncovered standing in the middle of the room, are more susceptible to infection for the bouncy and forced flow around the human body. Droplet particle moves in the room as a random diffusion and it is very sensitive to the thermal load inside the room, generally depends on the bouncy force and pressure force due to convection heat transfer. when the AC location at the opposite direction of coughing flow, the droplet travels a distance of about 3 m, 2.85 m, and 2.75 m for real cough, sinusoidal cough, and cough jet respectively. While the droplet travel distance is about 3.1 m, 3.2 m, and 2.9 m when the AC location is at the same direction of coughing flow. Finally, the adopted CFD modeling was also used to show the effects of different AC locations on coughing, breathing particle droplets distribution in different indoor spaces, such as buildings, hospitals, and public transports, Also, showed good visual demonstration and representation of the real physical processes.

There are 0 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Sattar Aljabaır This is me 0000-0002-0528-8651

Israa Alesbe This is me 0000-0002-6455-573X

Ali Alkhalaf This is me 0000-0003-2086-2890

Submission Date April 24, 2021
Publication Date January 31, 2023
DOI https://doi.org/10.18186/thermal.1243491
IZ https://izlik.org/JA93HP38BH
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Aljabaır, S., Alesbe, I., & Alkhalaf, A. (2023). CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room. Journal of Thermal Engineering, 9(1), 127-137. https://doi.org/10.18186/thermal.1243491
AMA 1.Aljabaır S, Alesbe I, Alkhalaf A. CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room. Journal of Thermal Engineering. 2023;9(1):127-137. doi:10.18186/thermal.1243491
Chicago Aljabaır, Sattar, Israa Alesbe, and Ali Alkhalaf. 2023. “CFD Modeling of Influenza Virus Diffusion During Coughing and Breathing in a Ventilated Room”. Journal of Thermal Engineering 9 (1): 127-37. https://doi.org/10.18186/thermal.1243491.
EndNote Aljabaır S, Alesbe I, Alkhalaf A (January 1, 2023) CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room. Journal of Thermal Engineering 9 1 127–137.
IEEE [1]S. Aljabaır, I. Alesbe, and A. Alkhalaf, “CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room”, Journal of Thermal Engineering, vol. 9, no. 1, pp. 127–137, Jan. 2023, doi: 10.18186/thermal.1243491.
ISNAD Aljabaır, Sattar - Alesbe, Israa - Alkhalaf, Ali. “CFD Modeling of Influenza Virus Diffusion During Coughing and Breathing in a Ventilated Room”. Journal of Thermal Engineering 9/1 (January 1, 2023): 127-137. https://doi.org/10.18186/thermal.1243491.
JAMA 1.Aljabaır S, Alesbe I, Alkhalaf A. CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room. Journal of Thermal Engineering. 2023;9:127–137.
MLA Aljabaır, Sattar, et al. “CFD Modeling of Influenza Virus Diffusion During Coughing and Breathing in a Ventilated Room”. Journal of Thermal Engineering, vol. 9, no. 1, Jan. 2023, pp. 127-3, doi:10.18186/thermal.1243491.
Vancouver 1.Aljabaır S, Alesbe I, Alkhalaf A. CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room. Journal of Thermal Engineering [Internet]. 2023 Jan. 1;9(1):127-3. Available from: https://izlik.org/JA93HP38BH

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering