Research Article
BibTex RIS Cite
Year 2023, , 1324 - 1338, 17.10.2023
https://doi.org/10.18186/thermal.1377221

Abstract

References

  • REFERENCES
  • [1] Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 1995;231:99–105.
  • [2] Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. NetsuBussei 1993;7:227–233. [CrossRef]
  • [3] Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001;78:718–720. [CrossRef]
  • [4] Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001;79:2252–2255. [CrossRef]
  • [5] Das SK, Putta N, Thiesen P. Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 2003;125:567–574. [CrossRef]
  • [6] Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, Lee JK. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 2006;6(Suppl 6):1068–1071. [CrossRef]
  • [7] Gulzar O, Qayoum A, Gupta R. Photo thermal characteristics of hybrid nanofluids based on Therminol 55 oil for concentrating solar collectors. Appl Nanosci 2018;9(20):111[CrossRef]
  • [8] Pourrajab R, Noghrehabadi A, Behbahani M, Hajidavalloo E. An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J Therm Anal Calorim 2021;143:33313343. [CrossRef]
  • [9] Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A Physicochem Eng 2010;355:109113. [CrossRef]
  • [10] Nkurikiyimfura I, Wang Y, Pan Z, Hu D. Enhancement of thermal conductivity of magnetic nanofluids in magnetic field. in ICMREE2011 - Proceedings 2011 International Conference on Materials for Renewable Energy and Environment 2011;2:1333–1337. [CrossRef]
  • [11] Li Q, Xuan Y. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid Sci 2009;33:591–596. [CrossRef]
  • [12] Parekh K, Lee HS. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys 2010;107:2–4. [CrossRef]
  • [13] Philip J, Shima PD, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett 2007;91:2005–2008. [CrossRef]
  • [14] Gavili A, Zabihi F, Isfahani TD, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Exp Therm Fluid Sci 2012;41:9498. [CrossRef]
  • [15] Li X, Zou C, Wang T, Lei X. Rheological behavior of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf 2015;84:925–930. [CrossRef]
  • [16] Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys 2007;9:367. [CrossRef]
  • [17] Hong RY, Ren ZQ, Han YP, Li HZ, Zheng Y, Ding J. Rheological properties of water-based Fe3 O4 ferrofluids. Chem Eng Sci 2007;62:5912–5924. [CrossRef]
  • [18] Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids. Nanoscale Res Lett 2011;3:1–7. [CrossRef]
  • [19] Ahmadi Nadooshan A, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J Mol Liq 2018;253:169–177. [CrossRef]
  • [20] Phuoc TX, Massoudi M. Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3-deionized water nanofluids. Int J Therm Sci 2009;48:1294–1301. [CrossRef]
  • [21] Anoop KB, Kabelac S, Sundararajan T, Das SK. Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration. J Appl Phys 2009;106:034909. [CrossRef]
  • [22] Chen L, Xie H, Li Y, Yu W. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta 2008;477:21–24. [CrossRef]
  • [23] Syam Sundar L, Singh MK, Sousa ACM. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf 2013;44:7–14. [CrossRef]
  • [24] Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4-Ag/EG hybrid nanofluid: An experimental study. Exp Therm Fluid Sci 2016;77:38–44. [CrossRef]
  • [25] Kumar A, Subudhi S Preparation, characteristics, convection and applications of magnetic nanofluids: A review. Heat Mass Transf 2018;54:241–265. [CrossRef]
  • [26] Platonic India Ltd. Graphene. Available at: https://platonicnanotech.com/ Last Accessed Date: 25.09.2023.
  • [27] DecagonDevices. Available at: http://manuals.decagon.com/Manuals Last Accessed Date: 25.09.2023.
  • [28] James Clerk M. A Treatise on Electricity and Magnetism. Cambridge: Cambridge University Press; 2010.
  • [29] Xue QZ. Model for effective thermal conductivity of nanofluids. Phys Lett A 2003;307:313317. [CrossRef]
  • [30] Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 2009;48:363371. [CrossRef]
  • [31] Timofeevaet EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys Rev E 2009;76:28–39. [CrossRef]
  • [32] Sundar LS, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Commun Heat Mass Transf 2013;49:17–24. [CrossRef]
  • [33] Gulzar O, Qayoum A, Gupta R. Experimental study on stability and rheological behaviour of hybrid Al 2 O 3 -TiO 2 Therminol-55 nano fluids for concentrating solar collectors. 2019;352:436– 444. [CrossRef]
  • [34] Gulzar O, Qayoum A, Gupta R. Experimental study on thermal conductivity of mono and hybrid Al2O3–TiO2 nanofluids for concentrating solar collectors. Int J Energy Res 2020;45:4370– 4384. [CrossRef]
  • [35] Krieger IM, Dougherty TJ. A mechanism for non‐newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 1959;3:137–152. [CrossRef]
  • [36] Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys 1952;20:571. [CrossRef]
  • [37] Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 1997;83:97–117. [CrossRef]
  • [38] Einstein A. Investigations on the theory of Brownian motion. Furth R, (ed.). New York: Dover Publications; 1956.
  • [39] De Vahl Davis G. Natural convection of air in a square cavity, a benchmark numerical solution. Int J Numer Meth Fluids 1984;3:249–264. [CrossRef]
  • [40] Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 2003;46:3639–3653. [CrossRef]
  • [41] Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square Enclosures: An experimental study. Int J Therm Sci 2010;49:1345–1353. [CrossRef]
  • [42] Joshi PS, Pattamatta A. Buoyancy induced convective heat transfer in particle, tubular and flake type of nanoparticle suspensions. Int J Therm Sci 2017;122:1–11. [CrossRef]
  • [43] Azeez K, Abu Talib AR, Ibraheem Ahmed R. Heat transfer enhancement for corrugated facing step channels using aluminium nitride nanofluid-numerical investigation. J Therm Eng 2022;8:734–747. [CrossRef]
  • [44] Sereir T, Missoum A, Mebarki B, Elmir M, Douha M. Effect of the position of the hot source on mixed convection in a rectangular cavity. J Therm Eng 2022;8:538–550. [CrossRef]
  • [45] Kilic M, Ullah A. Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids. J Therm Eng 2021;7(Suppl 14):1980–1989. [CrossRef]
  • [46] Zahmatkesh I, Ardekani RA. Effect of magnetic field orientation on nanofluid free convection in a porous cavity: A heat visualization study. J Therm Eng 2020;6:170–186. [CrossRef]
  • [47] Bayareh M, Nourbakhsh A. Numerical simulation and analysis of heat transfer for different geometries of corrugated tubes in a double pipe heat exchanger. J Therm Eng 2019;5:293–301. [CrossRef]
  • [48] Madani K, Ben Maad R, Abidi-Saad A. Numerical Investigation of cooling a ribbed microchannel using nanofluid. J Therm Eng 2018;4:2408–2422. [CrossRef]
  • [49] Kezzar M Nafir N, Tabet I, Khanetout A. A new analytical investigation of natural convection of non-newtonian nanofluids flow between two vertical flat plates by the generalized decomposition method (GDM). J Therm Eng 2018;4:2496–2508. [CrossRef]
  • [50] Singh P, Sharma P, Gupta R, Wanchoo RK. Heat transfer characteristics of propylene glycol/water based magnesium oxide nanofluid flowing through straight tubes and helical coils. J Therm Eng 2018;4:1737–1755. [CrossRef]
  • [51] Ahmed A, Qayoum A. Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials. Mater Renew Sustain Energy 2021;10:1–10. [CrossRef]
  • [52] Bashir M, Qayoum A, Saleem SS. Effect of banana peel powder on the fade and recovery of brake friction material. JOM 2022;74:2705–2715. [CrossRef]
  • [53] Dilawar M, Qayoum A. Performance study of aluminium oxide based nanorefrigerant in an air-conditioning system. Res Eng Struct Mater 2023;9:147162. [CrossRef]
  • [54] Ali B, Qayoum A, Saleem S, Mir FQ. Synthesis and characterization of high-quality multi layered graphene by electrochemical exfoliation of graphite. Res Eng Struct Mater 2022;8:447462. [CrossRef]
  • [55] Qayoum A, Panigrahi P. Experimental investigation of heat transfer enhancement in a two-pass square duct by permeable ribs. Heat Transf Eng 2019;40:640–651. [CrossRef]
  • [56] Bashir M, Qayoum A, Saleem SS. Experimental investigation of thermal and tribological characteristics of brake pad developed from eco-friendly materials. J Bio-Tribo-Corrosion 2021;7:1– 13. [CrossRef]
  • [57] Qayoum A, Panigrahi PK. Synthetic jet interaction with approaching turbulent boundary layer for heat transfer enhancement. Heat Transf Eng 2015;36:352–367. [CrossRef]
  • [58] Ahmed A, Qayoum A, Mir FQ. Investigation of the thermal behavior of the natural insulation materials for low temperature regions. J Build Eng 2019;26:100849. [CrossRef]
  • [59] Qayoum A, Gupta V, Panigrahi PK, Muralidhar K. Influence of Amplitude and Frequency Modulation on Flow Created by a Synthetic Jet Actuator. Sens Actuators A Phys 2010;162:36–50. [CrossRef]
  • [60] Ahmed A, Qayoum A, Mir FQ. Spectroscopic studies of renewable insulation materials for energy saving in building sector. J Build Eng 2021;44:103300. [CrossRef]
  • [61] Qayoum A, Gupta V, Panigrahi PK, Muralidhar K. Perturbation of a laminar boundary layer by a synthetic jet for heat transfer enhancement. Int J Heat Mass Transf 2010;53:5035–5057. [CrossRef]

Investigation of thermo-rheological properties of Fe3O4/Ethylene glycol nanofluid in a square cavity

Year 2023, , 1324 - 1338, 17.10.2023
https://doi.org/10.18186/thermal.1377221

Abstract

Many fluids used in heat transfer and transport phenomena restrict the effectiveness of heat exchange equipment on account of their low thermal conductivity. Using nanofluids, the ef-fectiveness of heat exchange equipment is enhanced by many folds. The use of magnetic nano-fluids for heat transfer generates a prospect of regulating flow and controlling the thermal and transport properties particularly the thermal conductivity and viscosity using an externally applied magnetic field. The present study involves synthesis of oleic acid-coated magnetic nanofluids at varying concentrations of 0 to 0.643% by volume, measurement of thermal conductivity, rheological properties and corresponding numerical simulation of Nanofluid in a heated square cavity. The thermal conductivity measurement have been carried out by transient hot-wire method using KD2-pro at varying concentrations of solid phase. The re-sults show a significant increase in thermal conductivity with increase in particle concentra-tion. Rheological measurements show variation in viscosity with shear rate, temperature and concentration. Moreover, it has been found that at low particle loading magnetic nanofluids exhibited Newtonian behavior unlike non-Newtonian behavior at increased concentration. Numerical simulation of the magnetic nanofluid in the heated square cavity demonstrates the immense potential of augmentation of heat transfer coefficient using such fluids.

References

  • REFERENCES
  • [1] Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 1995;231:99–105.
  • [2] Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. NetsuBussei 1993;7:227–233. [CrossRef]
  • [3] Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001;78:718–720. [CrossRef]
  • [4] Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001;79:2252–2255. [CrossRef]
  • [5] Das SK, Putta N, Thiesen P. Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 2003;125:567–574. [CrossRef]
  • [6] Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, Lee JK. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 2006;6(Suppl 6):1068–1071. [CrossRef]
  • [7] Gulzar O, Qayoum A, Gupta R. Photo thermal characteristics of hybrid nanofluids based on Therminol 55 oil for concentrating solar collectors. Appl Nanosci 2018;9(20):111[CrossRef]
  • [8] Pourrajab R, Noghrehabadi A, Behbahani M, Hajidavalloo E. An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J Therm Anal Calorim 2021;143:33313343. [CrossRef]
  • [9] Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A Physicochem Eng 2010;355:109113. [CrossRef]
  • [10] Nkurikiyimfura I, Wang Y, Pan Z, Hu D. Enhancement of thermal conductivity of magnetic nanofluids in magnetic field. in ICMREE2011 - Proceedings 2011 International Conference on Materials for Renewable Energy and Environment 2011;2:1333–1337. [CrossRef]
  • [11] Li Q, Xuan Y. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid Sci 2009;33:591–596. [CrossRef]
  • [12] Parekh K, Lee HS. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys 2010;107:2–4. [CrossRef]
  • [13] Philip J, Shima PD, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett 2007;91:2005–2008. [CrossRef]
  • [14] Gavili A, Zabihi F, Isfahani TD, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Exp Therm Fluid Sci 2012;41:9498. [CrossRef]
  • [15] Li X, Zou C, Wang T, Lei X. Rheological behavior of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf 2015;84:925–930. [CrossRef]
  • [16] Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys 2007;9:367. [CrossRef]
  • [17] Hong RY, Ren ZQ, Han YP, Li HZ, Zheng Y, Ding J. Rheological properties of water-based Fe3 O4 ferrofluids. Chem Eng Sci 2007;62:5912–5924. [CrossRef]
  • [18] Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids. Nanoscale Res Lett 2011;3:1–7. [CrossRef]
  • [19] Ahmadi Nadooshan A, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J Mol Liq 2018;253:169–177. [CrossRef]
  • [20] Phuoc TX, Massoudi M. Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3-deionized water nanofluids. Int J Therm Sci 2009;48:1294–1301. [CrossRef]
  • [21] Anoop KB, Kabelac S, Sundararajan T, Das SK. Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration. J Appl Phys 2009;106:034909. [CrossRef]
  • [22] Chen L, Xie H, Li Y, Yu W. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta 2008;477:21–24. [CrossRef]
  • [23] Syam Sundar L, Singh MK, Sousa ACM. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf 2013;44:7–14. [CrossRef]
  • [24] Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4-Ag/EG hybrid nanofluid: An experimental study. Exp Therm Fluid Sci 2016;77:38–44. [CrossRef]
  • [25] Kumar A, Subudhi S Preparation, characteristics, convection and applications of magnetic nanofluids: A review. Heat Mass Transf 2018;54:241–265. [CrossRef]
  • [26] Platonic India Ltd. Graphene. Available at: https://platonicnanotech.com/ Last Accessed Date: 25.09.2023.
  • [27] DecagonDevices. Available at: http://manuals.decagon.com/Manuals Last Accessed Date: 25.09.2023.
  • [28] James Clerk M. A Treatise on Electricity and Magnetism. Cambridge: Cambridge University Press; 2010.
  • [29] Xue QZ. Model for effective thermal conductivity of nanofluids. Phys Lett A 2003;307:313317. [CrossRef]
  • [30] Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 2009;48:363371. [CrossRef]
  • [31] Timofeevaet EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys Rev E 2009;76:28–39. [CrossRef]
  • [32] Sundar LS, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Commun Heat Mass Transf 2013;49:17–24. [CrossRef]
  • [33] Gulzar O, Qayoum A, Gupta R. Experimental study on stability and rheological behaviour of hybrid Al 2 O 3 -TiO 2 Therminol-55 nano fluids for concentrating solar collectors. 2019;352:436– 444. [CrossRef]
  • [34] Gulzar O, Qayoum A, Gupta R. Experimental study on thermal conductivity of mono and hybrid Al2O3–TiO2 nanofluids for concentrating solar collectors. Int J Energy Res 2020;45:4370– 4384. [CrossRef]
  • [35] Krieger IM, Dougherty TJ. A mechanism for non‐newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 1959;3:137–152. [CrossRef]
  • [36] Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys 1952;20:571. [CrossRef]
  • [37] Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 1997;83:97–117. [CrossRef]
  • [38] Einstein A. Investigations on the theory of Brownian motion. Furth R, (ed.). New York: Dover Publications; 1956.
  • [39] De Vahl Davis G. Natural convection of air in a square cavity, a benchmark numerical solution. Int J Numer Meth Fluids 1984;3:249–264. [CrossRef]
  • [40] Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 2003;46:3639–3653. [CrossRef]
  • [41] Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square Enclosures: An experimental study. Int J Therm Sci 2010;49:1345–1353. [CrossRef]
  • [42] Joshi PS, Pattamatta A. Buoyancy induced convective heat transfer in particle, tubular and flake type of nanoparticle suspensions. Int J Therm Sci 2017;122:1–11. [CrossRef]
  • [43] Azeez K, Abu Talib AR, Ibraheem Ahmed R. Heat transfer enhancement for corrugated facing step channels using aluminium nitride nanofluid-numerical investigation. J Therm Eng 2022;8:734–747. [CrossRef]
  • [44] Sereir T, Missoum A, Mebarki B, Elmir M, Douha M. Effect of the position of the hot source on mixed convection in a rectangular cavity. J Therm Eng 2022;8:538–550. [CrossRef]
  • [45] Kilic M, Ullah A. Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids. J Therm Eng 2021;7(Suppl 14):1980–1989. [CrossRef]
  • [46] Zahmatkesh I, Ardekani RA. Effect of magnetic field orientation on nanofluid free convection in a porous cavity: A heat visualization study. J Therm Eng 2020;6:170–186. [CrossRef]
  • [47] Bayareh M, Nourbakhsh A. Numerical simulation and analysis of heat transfer for different geometries of corrugated tubes in a double pipe heat exchanger. J Therm Eng 2019;5:293–301. [CrossRef]
  • [48] Madani K, Ben Maad R, Abidi-Saad A. Numerical Investigation of cooling a ribbed microchannel using nanofluid. J Therm Eng 2018;4:2408–2422. [CrossRef]
  • [49] Kezzar M Nafir N, Tabet I, Khanetout A. A new analytical investigation of natural convection of non-newtonian nanofluids flow between two vertical flat plates by the generalized decomposition method (GDM). J Therm Eng 2018;4:2496–2508. [CrossRef]
  • [50] Singh P, Sharma P, Gupta R, Wanchoo RK. Heat transfer characteristics of propylene glycol/water based magnesium oxide nanofluid flowing through straight tubes and helical coils. J Therm Eng 2018;4:1737–1755. [CrossRef]
  • [51] Ahmed A, Qayoum A. Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials. Mater Renew Sustain Energy 2021;10:1–10. [CrossRef]
  • [52] Bashir M, Qayoum A, Saleem SS. Effect of banana peel powder on the fade and recovery of brake friction material. JOM 2022;74:2705–2715. [CrossRef]
  • [53] Dilawar M, Qayoum A. Performance study of aluminium oxide based nanorefrigerant in an air-conditioning system. Res Eng Struct Mater 2023;9:147162. [CrossRef]
  • [54] Ali B, Qayoum A, Saleem S, Mir FQ. Synthesis and characterization of high-quality multi layered graphene by electrochemical exfoliation of graphite. Res Eng Struct Mater 2022;8:447462. [CrossRef]
  • [55] Qayoum A, Panigrahi P. Experimental investigation of heat transfer enhancement in a two-pass square duct by permeable ribs. Heat Transf Eng 2019;40:640–651. [CrossRef]
  • [56] Bashir M, Qayoum A, Saleem SS. Experimental investigation of thermal and tribological characteristics of brake pad developed from eco-friendly materials. J Bio-Tribo-Corrosion 2021;7:1– 13. [CrossRef]
  • [57] Qayoum A, Panigrahi PK. Synthetic jet interaction with approaching turbulent boundary layer for heat transfer enhancement. Heat Transf Eng 2015;36:352–367. [CrossRef]
  • [58] Ahmed A, Qayoum A, Mir FQ. Investigation of the thermal behavior of the natural insulation materials for low temperature regions. J Build Eng 2019;26:100849. [CrossRef]
  • [59] Qayoum A, Gupta V, Panigrahi PK, Muralidhar K. Influence of Amplitude and Frequency Modulation on Flow Created by a Synthetic Jet Actuator. Sens Actuators A Phys 2010;162:36–50. [CrossRef]
  • [60] Ahmed A, Qayoum A, Mir FQ. Spectroscopic studies of renewable insulation materials for energy saving in building sector. J Build Eng 2021;44:103300. [CrossRef]
  • [61] Qayoum A, Gupta V, Panigrahi PK, Muralidhar K. Perturbation of a laminar boundary layer by a synthetic jet for heat transfer enhancement. Int J Heat Mass Transf 2010;53:5035–5057. [CrossRef]
There are 62 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Mohammad Kamran This is me 0000-0002-8821-5182

Adnan Qayoum This is me 0000-0002-4894-3425

Publication Date October 17, 2023
Submission Date February 21, 2022
Published in Issue Year 2023

Cite

APA Kamran, M., & Qayoum, A. (2023). Investigation of thermo-rheological properties of Fe3O4/Ethylene glycol nanofluid in a square cavity. Journal of Thermal Engineering, 9(5), 1324-1338. https://doi.org/10.18186/thermal.1377221
AMA Kamran M, Qayoum A. Investigation of thermo-rheological properties of Fe3O4/Ethylene glycol nanofluid in a square cavity. Journal of Thermal Engineering. October 2023;9(5):1324-1338. doi:10.18186/thermal.1377221
Chicago Kamran, Mohammad, and Adnan Qayoum. “Investigation of Thermo-Rheological Properties of Fe3O4/Ethylene Glycol Nanofluid in a Square Cavity”. Journal of Thermal Engineering 9, no. 5 (October 2023): 1324-38. https://doi.org/10.18186/thermal.1377221.
EndNote Kamran M, Qayoum A (October 1, 2023) Investigation of thermo-rheological properties of Fe3O4/Ethylene glycol nanofluid in a square cavity. Journal of Thermal Engineering 9 5 1324–1338.
IEEE M. Kamran and A. Qayoum, “Investigation of thermo-rheological properties of Fe3O4/Ethylene glycol nanofluid in a square cavity”, Journal of Thermal Engineering, vol. 9, no. 5, pp. 1324–1338, 2023, doi: 10.18186/thermal.1377221.
ISNAD Kamran, Mohammad - Qayoum, Adnan. “Investigation of Thermo-Rheological Properties of Fe3O4/Ethylene Glycol Nanofluid in a Square Cavity”. Journal of Thermal Engineering 9/5 (October 2023), 1324-1338. https://doi.org/10.18186/thermal.1377221.
JAMA Kamran M, Qayoum A. Investigation of thermo-rheological properties of Fe3O4/Ethylene glycol nanofluid in a square cavity. Journal of Thermal Engineering. 2023;9:1324–1338.
MLA Kamran, Mohammad and Adnan Qayoum. “Investigation of Thermo-Rheological Properties of Fe3O4/Ethylene Glycol Nanofluid in a Square Cavity”. Journal of Thermal Engineering, vol. 9, no. 5, 2023, pp. 1324-38, doi:10.18186/thermal.1377221.
Vancouver Kamran M, Qayoum A. Investigation of thermo-rheological properties of Fe3O4/Ethylene glycol nanofluid in a square cavity. Journal of Thermal Engineering. 2023;9(5):1324-38.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering